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1 Foreword

The ultimate objective of this work is to design planning and control archi-
tectures that enable autonomous vehicles to operate in open terrain with-
out sacrificing speed and maneuverability. To this end, we develop mobility
metrics for UG Vs operating off-road at high-speed regimes, explore optimal
algorithms to derive optimal paths for UGVs, and propose a framework for
motion planning. The major tasks to accomplish this goal are the following:

e [evelop an efficient stochastic terrain traversal prediction tool that
allows systematic assessment of the ability of a vehicle to negotiate
challenging terrain. This tool will improve the computational efficiency
of current Monte Carlo-based methods and allow for the construction
of a large library of obstacle traversal maneuvers.

e Desgign vehicle mobility metrics that quantify the ability of a vehicle
to traverse challenging terrain and to track trajectories with varying
curvature and speed. These metrics will be unique since they will: a)
represent a UG Vs obstacle traversal capability as a function of its tra-
jectory (i.e., path and velocity), and b) consider UGV agility (i.e., the
ability to track high-curvature paths, and execute challenging maneu-
Vers).

e Develop methods for evaluation of terrain/control strategy pairs that
provide a compact vet accurate way to identify, classify, and assess
terrain-specific maneuvers. This task will bridge the gap between ac-
curate but complex metrics, and tractable metrics that can be used in
real-time path planning.

e Develop a symbolic contrel framework that permits the execution of
complex, high-performance trajectories through the on-line combina-
tion of a number of baseline controllers, chosen from a finite library of
elementary behaviors or maneuvers.
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3 Problem Statement

In this project, we consider the problem of autonomous driving of land vehi-
cles in open terrain at high speeds. Achieving autonomous operation of these
vehicles in open terrain remains a. a. challenging problem not only due to un-
certainty of the operating environment, but also due to the limited knowledge
of the vehiele’s mobility in such type of terrain. Moreover, autonomous driv-
ing of wheeled vehicles at high speeds adds a new level of complexity due to
the time constraints imposed by the small reaction times and the nonlinear
characteristics of the vehicle’s operation. A typical scenario for autonomous
driving in open terrain is depicted in Figure 1, where an Unmanned Ground
Vehicle (UGV) deploys across a rocky, sloped, and vegetation-covered envi-
ronment.

Figure 1: Autonomous driving of an Unmanned Ground Vehicle (UGV)
across an open terrain with rocks, slopes, and vegetation.

High-speed autonomous navigation in rough terrain, like the scenario in
Figure 1, is challenging because navigation algorithms must consider nonlin-
ear vehicle dynamic effects such as wheel slip, skidding, ballistic behavior,
rollover, and vehicle-terrain interaction phenomena. Navigation algorithmns
must, also consider the presence of obstacles. Additionally, these algorithms



must be computationally efficient enough to operate in real time. [Further
difficulties arise due to real-world uncertainties caused by unknown/time-
varying vehicle parameters, unknown/poorly known terrain conditions, and
range sensor error and uncertainty. The reason for the poor understand-
ing of mobility in open terrain, that is, its ability to traverse rugged terrain
efficiently and safely, is rooted in the intrinsic complexity of the wvehicle’s
dynamics and in the vehicle/terrain interaction. These properties are hard
to quantify with a single scalar metric invelving vehicle and terrain features.
Generally speaking, a solution to the motion planning problem for high-speed
autonomous vehicles in a highly unstructured and uncertain environment re-
quires not only sophisticated vehicle design and hardware components (e.g.,
for actuation, sensing, and communication), but most importantly, it de-
mands advanced software algorithms and supervisory control strategies that
can make use of the full capabilities of these components.

The ultimate objective of this work is to design planning and control ar-
chitectures that enable autonomous vehicles to operate in open terrain with-
out sacrificing speed and maneuverability. To this end, we develop mobility
metrics for UG Vs operating off-road at high-speed regimes, explore optimal
algorithms to derive optimal paths for UGVs, and propose a framework for
motion planning. The major tasks to accomplish this goal are the following:

¢ Develop an efficient stochastic terrain traversal prediction tool that
allows systematic assessment of the ability of a wvehicle to negotiate
challenging terrain. This tool will improve the computational efficiency
of current Monte Carlo-based methods and allow for the construction
of a large library of obstacle traversal maneuvers.

e Design vehicle mobility metrics that quantify the ability of a vehicle
to traverse challenging terrain and to track trajectories with varying
curvature and speed. These metrics will be unigue since they will: a}
represent, a UG Vs obstacle traversal capability as a function of its tra-
jectory {i.e., path and velocity}, and b} consider UGV agility (i.e., the
ability to track high-curvature paths, and execute challenging maneu-
Vers).

e Develop methods for evaluation of terrain/control strategy pairs that
provide a compact yet accurate way to identify, classify, and assess



terrain-specific maneuvers. This task will bridge the gap between ac-
curate but complex metrics, and tractable metrics that can be used in
real-time path planning.

e Develop a symbolic confrol framework that permits the execution of
complex, high-performance trajectories through the on-line combina-
tion of a number of baseline controllers, chosen from a finite library of
elementary behaviors or maneuvers.

The results obtained from a research period of one yvear are summarized in the
next section. A detailed presentation of these results as well ag a thorough
description of the methodclogies emploved to derive them can be found in
Appendix A-B.



4 Summary of Results

4.1 Efficient stochastic terrain traversal.

We have developed a computationally efficient method for mobile robot mo-
bility prediction. Such a method would be useful in analysis of high speed
motion, especially in uneven, natural terrain. It would also find applica-
tion in both motion planning and contrel algorithms designed for high speed
scenarios.

Our approach to mobility prediction is based on the stochastic response
surface method (SRSM). The SRSM is a method for efficient representation
of the response of systems that are subject to uncertainty. In this approach,
we represent model inputs as functions of normal random variables, with each
having zerc mean and unit variance. The same set of random variables is
then used to represent a user-specified cutput. An equivalent reduced model
for the output is expressed in the form of a series expansion, consisting of
multi-dimensional Hermite polynomials of normal random variables, as:

7 1 iy
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where y refers to an output metric, a;,,a;,, ... are coeflicients to be deter-
mined, &, ,&,, ... are i.i.d. normal random variables, and T'j(&,,&,,. ., &,)
is the Hermite polynomial of degree ¢.

The unknown coefficients are then estimated from a small number of
model simulations, by choosing a set of sample points (i.e. collocation points),
calculating the model output at these points, then applying regression to find
the coeflicients. The approximate reduced model was then used to analyze
the system subject to uncertainty. It has been shown that this approach
vields results that are comparable in accuracy to the outputs of classical
Monte Carlo approaches.

The SRSM approach can be applied to a variety of applications such
as those related to mobility prediction (including obstacle traversal, slope
traversal, and rollover analysiz) and motion planning {i.e. terrain dependent
path generation) while explicitly considering uncertainty in terrain and/or
vehicle parameters, The form of the uncertainty distribution can be specified,
and can be state or position dependent.

For mobility analysis of a vehicle traversing sloped, deformable terrain, a
simple description of mobility was defined as the probability that for a given



initial velocity at an initial position, the robot will have a non-negative ve-
locity after moving up the incline. Taking into account uncertainty in terrain
parameters, this was presented as a distribution of traversal probability ver-
sus initial velocity, which could then be used to predict for which velocities
the robot will be able to traverse the deformable terrain region with a reason-
ably high probability. A classical Bekker-type wheel soil interaction model
was used to calculate the drawbar pull (i.e. net longitudinal wheel thrust).
An equivalent model for the drawbar pull was then formulated using the
SRSM approach which was then used to calculate the traversal probabilities.

The approach was also used for mobility analysis of a vehicle traveling
along a side slope. A probabilistic reachability metric was generated based on
the statistics of the (spatial) distribution of trajectories resulting from a given
open loop input over various distinct terrain types, and the mean trajectory
was plotted along with the probability ellipsoids; the latter representing the
deviation from the mean path under uncertainty. This is shown in Figure 2.
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Figure 2: Mobility analysis “Reachability Metric” for vehicle traveling along
a side-slope.

The SRSM method was also applied to rollover analysis of a Dubins ve-
hicle for various steering high speed maneuvers. The rollover tendency was
analyzed while considering uncertainty in the vehicle roll stiffness parame-



ters. The linear model considered included lateral acceleration, vaw and roll
dynamics. [t was shown that, as expected, explicit consideration of uncer-
tainty vielded a richer description of the rollover probability as compared to
a deterministic model-based approach.

Finally, initial investigation intc integrating the SRSM approach with a
moticn planning method was performed. The motion planning method was
based on rapidly exploring random trees {RRTs). Here, the SRSM method
was used to calculate mobility-related statistics for each branch of the motion
plan tree for a high speed vehicle motion. The resulting motion plan therefore
implicitly considered uncertainty in its determination of an safe, rapid path
across uneven terrain.

Our major results are as follows:

¢ A method for maobile robot mobility prediction based on the stochastic
response surface method was developed. Results obtained using the
SESM matched closely with those obtained through the use of the
Monte Carlo methods. The following advantages were observed:

— Computational time for the SRSM was found to be approximately
two orders of magnitude lower than that of classical Monte Carlo
methods.

— The SRSM approach allows for the explicit consideration of un-
certainty (in vehicle and/or terrain models) during aggressive ma-

. / J & YR
neuvering,.

— The approach represents a potential pathway towards robust ag-
gressive control framework.

e The SRSM method was applied to several practical application sce-
narios, including mobility prediction on sloped terrain, and high speed
motion planning. Major results included:

— Simulation results of an analysis of vehicle mobility on a side slope.
— Initial results for a motion planning method that explicitly con-

siders model uncertainty.

Appendix B contains a conference paper that is a direct result of this
research.



4.2 Optimal motion planning on heterogeneous ter-
rain.

We consider the problem of computing optimal paths for UGVs from a given
configuration to a final configuration. For simplicity, we assumed that the
environment is obstacle-free and a simple kinematic model of the car depicted
in Figure 3, which is given by the equations

& = wcosb,
¥ = wsind, (1)
g = u

?

where (z,y,0) € SE(2), (z,y) is the vehicle’s position, @ is the angle between
the vehicle and the vertical axis determining the vehicle’s orientation, » is the
forward, positive velocity and u is the bounded angular acceleration input,
which, without loss of generality, is assumed to take value in [—1,1]. This
vehicle model is usually referred to as Dubins vehicle and has been broadly
used as a kinematic model for path planning of UGVs {and UAVs), like the
one depicted in Figure 3.

Figure 3: Dubins car.

For a UGV given by (1) on an open terrain, our goal is to compute
the optimal path starting at a given initial configuration and ending at a
given final configuration. The parameters in the model (1) vary for terrains
with different properties. The maximum forward speed changes with the
terrain roughness while the maximum curvature of the paths depends on
the friction coeflicient of the terrain. A convenient modeling abstraction for



navigation on heterogeneous open terrain is to classify terrain regions based
on these parameters and then associate to each region a vehicle model with
appropriate maximum forward velocity and friction coefficient. For clarity
in the exposition, we only consider the case of heterogeneous velocity along
the terrain where the vehicle is deployed. Two different velocities, 21 and wg,
define the constant, forward velocity of Dubins vehicle on two patches of the
plane, patch P; and patch Ps, depicted in Figure 4. We are interested in
solving the following problem:

Find the minimum-time path for Dubins vehicle from an initial
configuration in patch Py to a final configuration in patch Ps.

Figure 4 shows possible initial and final vehicle configurations, which are
denoted by (z°,4%,8%) and (x!,4',8Y), respectively, for which a minimum-
time path is to be found. To the best of our knowledge, the problem described
above has not been addressed in the past, perhaps due to the fact that the
clagsical Pontryagin’s Maximum Principle is not applicable because of the
discontinuous behavior at the common boundary between the patches.
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Figure 4: Dubins vehicle on an heterogeneous terrain. The initial configu-
ration is given by (z°,%",60%) and the final configuration by (z!,%!,6%). The
forward velocity in patch P; is smaller than the forward velocity in patch Ps.

We have established conditions for time-optimal maneuvers of autonomous
vehicles operating on terrain with variable characteristics. Our results include
conditions that the paths need to satisfy at the boundary between terrains
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with different maximum velocity., These conditions reduce notably the com-
putational load in selecting maneuvers and enable the generation of optimal
moticn planning algorithms. We summarize them as follows:

e The portions of the paths that remain in either region are Dubins op-
timal.

e Optimal paths are such that, at the boundary between the regions,
their type does not change.

e Optimal paths that cross the boundary describing a straight line are
orthogonal to the boundary.

e The angles of the path pieces within each region before and after cross-
ing the boundary satisfy a refraction law.

Appendix B containg formal statements of these results.

4.3 Robust control algorithms for motion primitive se-
lection.

Given a mathematical model of a vehicle, or in more general terms, a dy-
namical system, with state « and input u (e.g. a static input/output map,
an ordinary differential equation with inputs, a partial differential equation
with inputs, etc.) describing its behavior for each given input, the motion
planning problem for is that of given a motion plan u, find & control input
u such that the state x satisfles the specification given by the motion plan
w. to r. This specification is usually given in terms of a a curve in the state
space parameterized by time £, in which case the goal of a motion planning
algorithm is to steer x to that curve. Algorithms that accomplish such a
task are commonly applied in robotics as a method to solve steering prob-
lems. One challenge for these algorithms is that in real-world settings, they
must accomplish the motion planning task in the presence of obstacles, mea-
surement error, exogenous disturbances, and unmodeled dynamics. Hence,
reactivity and robustness are highly desired properties for these algorithms.

A particular class of motion planning algorithms, which are known as
maneuver-based motion planning algorithms, exploits the symmetry proper-
ties present in certain classes of nonlinear systems, in particular, UGVs, to
perform challenging motions. Motion primitives available in a pre-defined li-
brary, designed off-line with model-based design tools, trial and error, and/or
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obtained from motions generated by humans, are concatenated to perform
a given motion plan. For example, an UGV can be controlled to perform
motions, like the one in Figure 5, by breaking the motion in “pieces” where
inputs are constants, referred to as trim frajectories, and where the inputs are
varying with certain law, referred to as maneuvers. Figure 5 denotes the dif-
ferent pieces. Typically in maneuver-based motion planners, trim trajectories
and maneuvers are executed by applying appropriate open-loop control laws.
A method to synchronize the control decisions is to implement a switching
logic in a maneuver automaton.

maneuver

Figure 5: Moticn plan for an UGV divided into trim and maneuver pieces.

The open-loop nature of the maneuver-based motion planning method
outline above limits its application to nominal scenarios, that is, those with-
out perturbations, e.g. measurement noise, unmodeled dynamics, ete., which,
in turn, narrows its applicability to steering of vehicles across open terrain.
BEven for smooth feedback systems, the presence of arbitrarily small pertur-
bations can lead to totally different behavior than in the nominal case. In
fact, establishing robustness (vaguely, the property that under arbitrarily
small perturbations the system solutions are “close” to the nominal ones)
is not a straightforward task, even in scenarios with homogeneous terrain.
Moreover, the metric used to characterize closeness between solutions trajec-
tories (for example, the distance between a trim reference trajectory and a
UGV trajectory) should take into account that corresponding pieces in the
nominal and perturbed motions may occur over different time intervals.

Another challenge in robustifying maneuver-based motion planning is
that the nominal trajectories resulting from it are not always necessarily
smooth. Hence, standard trajectory tracking control design techniques are

12



not applicable. Even when these standard tools are applicable, tracking de-
sign for aggressive maneuvers iz not always an easy task (for example, to
design a tracking controller for an UGV to track motion plans having tight
turn maneuvers would require a control law that guarantees fast tracking at
the turns while at other pieces of the reference trajectory, slower tracking
would suffice).

To address some of the issues mentioned above, we propose a hybrid
control framework for robust maneuver-based motion planning. The major
results are as follows:

o Trim trajectories and maneuvers can be combined in a hybrid controller
to execute maneuver-based motion plans by means of a timer, two logic
variables, and one auxiliary state.

e The graphical distance between trajectories specified by the motion plan-
ner and the trajectories to the closed-loop (hybrid) system is an appro-
priate metric to evaluate closeness between motions.

o Robustness of tracking of maneuwver-based motion planning for general
nonlinear systems with symmetries to perturbations in the initial con-
ditions, external disturbances, and unmodeled dynamics.

We show that this framework results in a hybrid system with implementable
semantics, and hence, useful experimental setups. The resulting transition
system and control methodology is such that, given a sequence of commands,
selects and executes a particular maneuver from a library of motion primi-
tives. The main feature of the system is its robustness to external perturba-
tions, which are typical in controlling UG Vs in challenging terrain and, unless
the associated control algorithm is robust, concatenation of motion primitives
would not be successtul. More details can be found in Appendix C.
Regarding the generation of motion primitives, which is key in the con-
struction of a library of trim trajectories and maneuvers for the purposes of
motion planning, we provide a detailed calculation of trim trajectories for a
particular UGV model: the half car. We show that its set of trim trajectories
includes trajectories at the limit of the vehicle’s performance, like those as-
sociated to vehicle motions under slipping and skidding conditions occurring
at large velocity and small turning radius, which are typical in open terrain

settings. See Appendix D for more details.
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Mobility Prediction for Unmanned Ground Vehicles
In Uncertain Environments

Gaurav Kewlani, Karl lagnemma
Robotie Mobility Group, Massachusetts Institute of Technology, Cambridge, MA, USA

ABSTRACT

The ability of autonomous unmanned ground vehicles (UG Vs) to rapidly and effectively predict terrain negotiability is a
critical requirement for their use on challenging terrain. Most methods for assessing traversability, however, assume
precise knowledge of vehicle and terrain properties. In practical applications, uncertainties are assoclated with the
estimation of the vehiclefterrain parameters, and these uncertainties must be considered while determining vehicular
mobility. Here a computationally inexpensive method for efficient mobility prediction based on the stochastic response
surface (SRSM) approach 1s presented that considers imprecise knowledge of terramn and vehicle parameters while
analyzing various metrics associated with UGV mobility. A conventional Monte Carlo method and the proposed
response surface methodoelogy have been applied to two simulated cases of mobility analysis, and it has been shown that
the SRSM method is an efficient tool as compared to conventional Monte Carlo methods for the analysis of vehicular
mobility in uncertain environments.

Keywords: Homogeneous Chaos, Monte Carlo, Latin Hypercube Sampling, Vehicle Mobility, Vehicle Rollover,
Stochastic Response Surface, Terrain Modeling, Unmammed Ground Vehicle, Wheel-Soil Interaction

1. INTRODUCTION

Future Army operations will employ autonomous or semi-autonomous unmanned ground vehicles (JGVs) in both cross-
country and urban environments. A fundamental requirement of these vehicles i1s to quickly predict their ability to
negotiate rough terrain regions and surmount obstacles. This mobility prediction capability is critical to the successtul
deployment of UGVs that can operate effectively on challenging terrain with mimimal human supervision.

Significant work has been done to understand and predict the mobility of vehicles in natural terrain [1], [2]. However,
these efforts assume accurate knowledge of vehicle parameters and wheel- (or track-) soil interaction properties,
gathered from terramn measurement devices such as cone penetrometers. In field conditions, however, UGVs often only
have access to sparse and uncertain parameter estimates drawn from “standard” robotic sensors such as LIDAR.
Moreover, significant uncertainties are often associated with estimates of vehicle parameters, due to effects such as
loading, wear, fuel consumption, etc. It 1s thus crtical to consider these uncertainties when deriving predictions of
vehicle mobility.

There exists a vast body of literature on techniques to estimate the probability distributions of processes that are subject
to uncertamty. Such techrmiques could be applied to the mobility prediction problem, by first modeling the uncertainty in
vehicle and terrain parameters, then defining a range for their probable values, and finally analyzing the performance of
a UGV model over that parameter space, as in [3]. The result would be a prediction of the ability of a UGV to
successfully traverse a given route that rigorously considers vehicle and terrain parameter uncertainty. Tlis analysis can
be performed using a variety of techniques such as interval mathematics, probabilistic methods and fuzzy set theory,
among others [4], [5].

A traditional method for estimating the probability density function of a system’s output response from known or
estimated input distributions is the Monte Carlo method [6], [7]. This approach involves the random selection of a value
for each uncertain parameter from its uncertainty range, weighted by its probability of oceurrence, followed by model
simulation using this parameter set. This process 18 repeated many times to obtain the probability distribution of an
output metric.

*{gkewlani, kdi}(@mit.edu; Phone 617 253-2334; Fax 617 258-7881, http://web.mit.edu/mobility




Since parameter values are selected randomly, a large number of simulation rums 1s often required to obtain reasonable
results, leading to a (usually) high computational cost. Structured sampling techniques such as Latin hypercube sampling,
importance sampling, and others can be used to improve computational efficiency, however these gains may be modest
for complex problems [8], [9].

More recent approaches to stochastic simulation mclude the polynomial chaos approach, which is based on Wiener’s
theory of homogeneous chaos. Since the introduction of the spectral stochastic finite element method [10], polynomial
chaos has been successfully applied to represent uncertainty i various structural and flud mechanics problems.
Recently, researchers have applied this technique to the dynamic simulation of a 7 DOF vehicle [11]. However, the
collocation approach employed therein has been noted to be inherently unstable and exhibit convergence problems [12].
Moreover, different combinations of collocation pomts may lead to considerably different output estimates, or they may
not carrespond to high probability regions of the input parameter space.

Here we propose the use of the stochastic response surface method (SRSM), as described by Tsukapalli [13], [14] for the
mohility prediction of UGVs m natural terrain that uses a regression based approach to obtain an equivalent reduced
model for the output and serves as a computationally inexpensive tool for predicting the traversability of a UGV over
rugged terrain.

This paper 1s organized as follows. In Section 2, we briefly introduce the Monte Carlo and SRSM methods and present
their application to vehicle dynamic modeling. This is followed by a description of a three degree of freedom vehicle
model in Section 3. The effect of terrain physical parameter uncertainty on vehicle mobility is analyzed. Simulation
results obtamed using Monte Carlo and SRSM approaches are compared in Section 4. It can be seen that accurate,
efficient statistical mobility prediction can be achieved using the proposed response surface techniques.

2. UNCERTAINTY ANALYSIS TECHNIQUES
2.1 Monte Carlo Method

With the advancements in computational technology, Monte Carlo techniques have found increasing application in
numerous fields over the last several years. These methods typically involve a (usually) large number of simulation runs
of an analytical or numerical system model using various combinations of model parameters, followed by the subsequent
analysis of the outputs. In other words, the model parameters (known as “input parameters”™) are randomly sampled from
their respective probability distributions, which are assumed to be known (or estimated) a priori, and multiple simulation
runs are conducted using each set of the mput parameter values to obtain the corresponding outputs for each case. En
estimate of the probability distribution of a user-defined output metric can then be estimated.

A variety of methods have been developed for efficient sampling from nput parameter probability distibutions,
mcluding (among others) stratified, importance and Latin Hypercube sampling [15], [16]. Generally, these methods
focus on ensuring that samples are generated from the entire range of the input parameter space while reducing
computational costs, and are thus an improvement over the standard Monte Carlo method.

In the mobility prediction scenario, vehicle and terrain parameters are designated as uncertain input parameters. A
fundamental assumption of the proposed approach is that while the terrain and/or vehicle parameters may not be
precisely known, engineering estimates of their distributions are available. This 13 a reasonable assumption for UGV
physical parameter estimates, since the effects of loading, component wear, and parameter uncertainty can generally be
bounded with reasonable accuracy. Tt is also a reasonable assumption for terrain parameter estimates, since many
methods exist for coarsely classifying terrain from standard robotic sensors such as LIDAR and vision [17]-[19].

2.1.1 Algorithmic implementation

Here we discuss the general Monte Carlo approach as applied to mobility analysis. The method considers functions of
the form:

Y =gX) (M

where g represents the model under consideration, X is a vector of uncertain input variables and Y represents a vector of
estimated outputs.



A general procedure for the analysis is as follows:

a) Construct a vector X consisting of » relevant terrain and/or vehicle parameters. To define the input parameter
space and to characterize the uncertainty in the elements of X, assign a probability distribution to each input
parameter, based on corresponding engineering estimates.

While many forms of the input parameter distribution are possible, in this paper, the parameter values are assumed
to have a Gaussian distribution and to be uncorrelated.

b) Generate a sample value for each of the # input variables from the corresponding probability distribution. More
specifically, a sample set:

Xj:[xﬂ,xﬂ,...,xm] )

1s generated from the input parameter space. This set may be generated randomly or using the structured sampling
techniques such as stratified sampling, importance sampling or Latin Hypercube sampling.

In the “standard” Monte Carlo approach, random sampling of the input parameter distributions is performed.
However, to ensure representation of the entire parameter range, a large number of simulations must often be
performed. Stratified sampling, on the other hand, partitions the sample space into a number of strata, with each
stratum having a specified probability of occurrence. Random samples are then drawn from each stratum. While this
ensures dense coverage of the parameter space, the definition of the strata and the calculation of their probabilities
must be carefully addressed. Latin hypercube sampling can ensure dense coverage of the range of each input
variable while avoiding the difficulties associated with stratified sampling. This is achieved by dividing each input
parameter’s range into disjoint intervals of equal probability and then randomly sampling a parameter value from
each interval. This is illustrated in Figure 1.
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Fig. 1. Ilustration of sampling using the Latin hypercube method.

c¢) Evaluate the output response from the system model under analysis using the values from the input parameter set
X as model parameter values.

d) Repeat steps b) and ¢) to generate a probability distribution for the output metric. Various statistics such as the
estimated expectation, g, or variance, o, can then be determined as follows:

p= %;g(xj) 3
o %‘é(g(xj)fmﬂ e

The number of simulations () is chosen to be large enough such that the output distribution converges to a stable value.



Figure 2 below represents schematically the general Monte Carlo approach for uncertainty analysis:

X X Xy
Model
2(X)

Fig. 2. Ilustration of uncertainty analysis using the Monte Carlo method.
2.2 Stochastic Response Surface Method

The stochastic response surface method (SRSM) represents inputs and outputs of a system under consideration via serics
approximations using standard random variables. which results in a computationally efficient means for uncertainty
propagation through the models. In SRSM, inputs are represented as functions of normal random variables, cach having
zero mean and unit variance. The same set of random variables that is used to represent input stochasticity can then be
used for representation of outputs,

An cquivalent reduced model for an output is expressed in the form of a series expansion consisting of multi-
dimensional Hermite polynomials of normal random variables, as:

y:at.,+iaﬁr](§\}+i iaﬁ,}r:(g,gﬁ)+". (&)

where y refers to an output metric, a;;, a,... are coefficients to be determined, &;, o.... are i.i.d. normal random
variables, and I'y(&;, &...... &) is the Hermite polynomial of degree g, given as:

L T; 57 1T,
g'e ¢ 588
L (E.E .. E)=(=])Te? ". e ? (6)
JEEnE )= (D) T
For notational simplicity, the serics may be written as:
N
We.8) =)y, (P, (&) ™
J=0

where the series is truncated to a finite number of terms and there exists a correspondence between (&), &a ..., &) and
®(£), and their corresponding coefficients.

The series expansion contains unknown coefficient values that can be estimated from a limited number of model
simulations to generate an approximate reduced model. This is achieved by choosing a set of sample points from high
probability regions then calculating the model output at these points [13], [20]. A regression based approach is then
utilized to obtain values for the unknown coefficients [14]. Once the (statistically equivalent) reduced model is
formulated, it can be used to facilitate analysis of the system subject to uncertainty.

This procedure thus results in a reduction in the number of model simulations (and, therefore, a reduction in
computational cost) required for estimation of output uncertainty, as compared to the conventional probabilistic methods
such as Monte Carlo methods. Further details on SRSM can be found in [14].

2.2.1 Algorithmic implementation

Here a summary of the SRSM method is presented as applied to robotic mobility prediction.



a) Represent uncertain mnput parameters in terms of standard random variables (here Gaussian variables). A
terrain/vehicle parameter X can be written as:

X, =4, +0,8 (8)
where g, is the mean, g; represents the standard deviation and £ is a standard normal random variable.

b) Express the model output under consideration in terms of the same set of random variables. While for Gaussian
variables, Hermite polynomials are used, different orthogonal polynomial basis functions are used corresponding to
the probability distributions of other non-Gaussian variables. This 1s shown m Table 1.

Table 1. Polynomial Basig Functions and Corresponding Random Variablesg

RANDOM POLYNOMIAL
VARIABLE FuNcTION
Gaussian Hermmite
Gamma Laguerre
Beta Tacobi
Uniform Legendre

c¢) Estimate the unknown coefficients of the approximating series expansion. This is accomplished via a regression
based appreach, first by computing the model output at a set of collocation pomts [13], [20]. These pots are
selected such that each standard random variable takes a value of either zero or a root of the Hermite polynomial of
a higher order. This ensures that pomts from lugh probability regions are represented. Taking the mumber of
collocation points (M) to be nearly twice in number to the number of coefficients (A1) has been shown to yield
robust coefficient estimates [14], [20]. Calculation of the model output at these points results in set of equations with
the number of equations exceeding the number of unknown coefficients. Using the linear least square method and
singular value decomposition, the system of linear equations similar to the one shown below can be solved:

L&) Ti&) - Tl&n)(»ml) [(¥4)
L&) L&) . Tyl) || n@) ¥ &) (9)

L&) TiGsd o TG A3 (D)) \ 38 5y)

The reduced equivalent model can henceforth be used for the analysis, which avoids the requirement of multiple runs of
the (generally) non-linear model, thus resulting in reduced simulation time. The advantage of the SRSM technique is
therefore that the number of model simulations is greatly reduced relative to conventional methods, thus improving
computational efficiency. Further, the accuracy of the computational model can often be mcreased by mcreasing the
order of the polynomial chaos expansion.

3. 3. MOBILITY PREDICTION SCENARIO

3.1 Traversal over Uncertain Terrain

Here an analysis of a simplified mobile robot terrain traversal scenario is presented using the SRSM technique, which
considers a mobile robot traveling on flat outdoor terrain (here modeled as heavy clay) and then attempting to navigate
up an inclined region of highly deformable terrain (here modeled as dry sand). This is illustrated in Figure 3. Tt is
assumed that sigmficant uncertamty 1s associated with a small number of cntical terrain physical parameters (here,
cohesion and internal friction angle). The UGV’s mobility 18 analyzed using a baseline “standard” Monte Carlo approach
(SMC), a Latin hypercube Monte Carlo approach (LHSMC) and the stochastic response surface techmque.

A simple description of mobility in the proposed scenario is defined as the probability that for a given initial velocity
(u,) at the initial position (A) (see Figure 3), the robot will have a non-negative velocity at point (B), after moving up the
sandy incline. Taking into account the uncertainty in terrain parameters, this can be presented as a distribution of
traversal probability versus initial velocity, which can then be used to predict for which velocities the robot will be able
to traverse the deformable terrain region with a reasonably high probability.



q

Fig. 3. Simplified scenario considered for mobility prediction under uncertainty

A classical Bekker-type wheel soil interaction model is used to calculate the drawbar pull (i.e. net longitudinal wheel
thrust) for the above analysis [21], [22]. This model assumes quasi-static motion, and that the robot wheel is rigid
relative to the terrain. An equivalent model for the drawbar pull is then formmuilated using the approach, which is later
used to calculate the traversal probabilities.

Fig. 4. Wheel-terrain interaction model for rigid wheel on deformable terrain.

For the vehicle terrain interaction model shown in Figure 4, the drawbar pull is given by:
8, 8,
DP—r{jz(e) cos@ do - [ c(P)sing d@} (10)
& 4

where () and o(¢) represent, respectively, the shear stress and normal stress at the wheel-terrain interface (divided into
two regions in Figure 4 to more clearly represent the stress distribution), and are given by:

£(6)=(c+ a(@)tan;aﬁ)[l— e_%wl_g"(l_”(“ngl*i“m]} )
51(9)=(%+ k;)(r(cosé —cosg))” (12
02(9)—(%+k‘)|:r[(cos{91 _G%J_Cosq)ﬂ (13

The drawbar pull can hence be written as:

&,

i

|
j r,(B)cos8 dO+ j r,(B)cos O db
DP=rb| " o
= 2}
7j o,(0)sin @ do— j o, (6)sin @ d6
0

8,

nt

(14)

The parameters employed in (10)-(14) are given in Table 2.



Table 2. Parameters Involved In Drawbar Pull Calculation

SYMBOL | QUANTITY

¥ Wheel radius

b Wheel width

a; Angle corresponding to start of contact
&, Angle corresponding to loss of contact
&, Maximum stress angle

c Cohesion

@ Internal friction angle

i Wheel slip

n

Sinkage exponent
k., k, Pressure sinkage moduli

Governing equations of motion for the mobility prediction scenario can now be written as:
i di=¥dy (15)

and
i:Efgsinyf (16)
m

where m 18 the vehicle mass, g represents the acceleration due to gravity and v 1s the angle of the meline w.rt. the
horizontal.

3.1.1 Application of SRSM

As part of this approach, a reduced stochastic model 1s developed for drawbar pull (DF) considering ¢ and ¢ as uncertain
parameters with normal distributions. Cohesion and internal friction angle parameters are represented as:

c=u+¢0, (17)
=i, +&,0, (18)

where &£ . and §¢> are standard normal random variables. Drawbar pull is now expressed as:
DP =a,+aé + a8, +a,(& —Dta (& D+ ass, 19

The parameters ¢ and @ were chosen since they extubit sigmficant influence on DFP. Although they are assumed to be
normally distributed, other possible probability distributions (such as uniform or beta distribution) can be considered as
well. The corresponding values for ¢ and ¢ used in this analysis can be found i Table 3.

Table 3. Probability Distribution Information For Uncertain Terrain Parameters (¢, @)

PARAMETER DISTRIBUTION MEAN STD. DEV.
FuNcTION
¢ (Heavy Clay) Gaussian 69 kPa 8.50 kPa
@ (Heavy Clay) Gaussian 34 deg 2.10 deg
¢ (Dry Sand) Gaussian 1.04kPa | 0.125kPa
@ (Dry Sand) Gaussian 28 deg 1.75 deg

3.2 Rollover Analysis considering Vehicle Parameter Uncertainty

Here a three degree of freedom vehicle model (see Figure 5) is considered that includes lateral acceleration, yaw and roll
dynamics. The roll and yaw moments of inertia are represented by I, and I, respectively, m 1s the total vehicle mass, m;
18 the sprung mass and v 1s the longitudinal velocity of the vehicle. The front wheel steering angle is represented by 6.
The linearized equations for this model are given as:
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(L +m B )p=TM, = m ghp=m v f+y)+M, (23)

where C; and C, are the comering stiffnesses of the lumped front and rear wheels, and /- and /, are respectively the
distances of the front and rear axles from the cg. The suspension moment, represented by M, 1s given as:

M, =~(k, <k Yp— (b, +b,)9 (24)

where krand &, are the stiffnesses and &,and b, are the damping factors for the front and rear axles respectively. [t should
be noted that there is uncertainty associated with the estimation of the values of the above vehicle parameters. This
uncertainty will be considered n the present analysis.

Fig. 5. Vehicle Model for Mobility Analysis

For measuring vehicle mobility, a simple rollover coefficient is employed that is similar to the one described in [24].
Using the principle of balance of moments and vertical forces, a rollover metric for the linear model above 1s given by:

2, (h, + h)(v(m w)—h é}j (25)
mgy

W

R=

where A, is the height of the roll axis above the ground and y,, is the track width. For this metric, absolute values of R
that are greater than 1 mdicate vehicle wheel Lftoff and thus impending rollover.

3.2.1 Application of SRSM
We define the state space, X as:

. " T
X= {ﬁ v @ co} (26)
The vanables related to suspension stiffness are represented as polynomial chaos expansions, using Hermite polynomials

of standard normal random variables. Here, £, and &,, which are used to represent the input uncertainty in the system The
front and rear axle roll stiffness are considered to be normally distributed about their mean values. This is represented as:

k_f = My, +‘§1O-:cf (27)

k = My, +9€2O-k, (28)



Then the state variables can be represented as:

A8~ 35, 00,@) (29)
(.5 = g&,,(oaa@) (30)
1,8) = Z@ (&) @31

32

HB)=Y 0 (0D (&)

where £ =[£.4,].
The parameter values considered for the steering stiffness are shown in Table 4.

Table 4. Uncertain Vehicle Parameters in Rollover Analysis

PARAMETER MEAN STD. DEV.
o (Nm/rad) (Nm/rad)

Ky 30+10° 4-10°

k 30+10° 4x10°

A spectral stochastic analysis [11], [20] is performed using the above expansions to obfain the time evolution of the
rollover coefficient, subject to various steering input functions (sinusoidal, ramp-like and a double lane change

maneuver).

4, RESULTS

4.1 Traversal over Uncertain Terrain
Results from analysis of the mobility prediction scenario described in Section 3.1 are presented using SMC, LHSMC and

SRSM methods are presented for inclination angles (y) of 6° and 135° (see Figure 6). It can be seen that the distributions
generated by the SRSM method are nearly identical to those generated by the SMC and LHSMC methods. Increasing
the number of SMC and LHSMC runs slightly decreases distribution variance, however in both cases the differences

among the three methods is small.

Veee sman Voo smsM
{Znd order) (2nd order)
0.8+ LHSMC f 0.8H+++ LHSMC
ER{ETITTES) (VG UERY TER
= ol > n— §
S 08 e 1 = 0ia HMO 4
_% { nms) 6 dez 15 deg Il (2000 mns) 0 deg f 15 deg
S 5 3 H
Qo4 4 O 04- L
o g o -
02 f 1 02
0 0 "
- 25 3 35 4 4.5 2 25 3 3s 4 4.5
Initial Velocity (m/s)

Initial Velocity (m/s)
Fig. 6. Probability plots for mobility prediction scenario, for small number of SMC and LHSMC runs (lefi) and large number (right)

The coefficient values obtained for a 2™ order expansion of drawbar pull (19) considering ¢, ¢ as the uncertain

parameters were:
a5=-1.4260, a, = 0.2981, a,= 0.5586, a; = 0.0000, a,=0.0091, as= 0.0000.



The results predict that increasing the robot’s initial velocity increases the probability of safe slope traversal, as expected.
Also, the minimum initial velocity required for successful traversal increases as the inclination increases. A clearly
defined “transition region” can be observed, where the probability of safe traversal 1s a function of terrain parameter
variance as well. This region effectively describes the “risk™ of traversal at a certain critical velocity range.

Also, the computation time of the SRSM method is compared to SMC and LHSMC in Table 5, for the case of a terrain
inclination angle of 15 degrees. Tt can be seen that the proposed approach results in a significant computational
reduction compared to the baseline approaches. This suggests that on-line, real time implementation of the method is
feasible for simple models.

Table 5. Computation Time for Mobility Prediction Analysis

TIME
SIMULATION
METHOD TAKEN
RUNS

(sec)
SMC 5000 55750
LHSMC 1000 11.343

SRSM (2™ order) 0.406

4.2 Rollover Analysis considering Vehicle Parameter Uncertainty

Results from analysis of the rollover scenario described in Section 3.2 are presented here. Simulations for various
vehicle maneuvers were conducted using the stochastic response surface method (SRSM), standard Monte Carlo (SMC)
and Monte Carlo Latin Hypercube Sampling (LHSMC). The accuracy of the SRSM is compared to that of the SMC and
LHSMC and the plots are presented in Figures 7 - 9. Close agreement between the three methods can be observed.
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Fig. 7. Vehicle Rollover Analysis for Sinusoidal Steering Input using Various Statistical Analysis Techniques
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Fig. 8 Vehicle Rollover Analysis for Ramp-Like Steering Input using Various Statistical Analysis Techniques
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Fig. 9. Vehicle Rollover Analysis for Double Lane Change Steering Input using Various Statistical Analysis Techniques

Stochastic analysis allows insight into the range of the variation of an output time series. In Figure 10, results are shown
for the steering angle and rollover coetficient for a double lane change maneuver, here including uncertainty bounds on
the 2c variation. In this particular analysis, it can be observed that while the mean absolute value of the rollover metric
(corresponding closely to the result from a deterministic simulation) remains less than one, the uncertain value exceeds
one, thus indicating a substantial risk of vehicle rollover when parameter uncertainty 1s explicitly considered.
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Fig. 10 Vehicle Rollover Analysis Using SRSM
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The simulation times for the approaches are also compared (see Table 6) for the various steering inputs. Computation
time for the SRSM method is approximately two orders of magnitude lower than for LHSMC. All computations were
performed on a desktop PC running unoptimized Matlab code.

Table 6. Simulation Times using Various Statistical Analysis Techniques for Vehicle Rollover Analysis

STEERING INPUT SMC LHSMC SRSM
(2000 RUNS) (400 RUNS)

Sinusoidal 192015 793.688 3 6.691 s

Ramp-like 193353 796.219 s 6.766 5

Double Lane Change 1952.7 s 808.235s 6.797 5

4. 5. CONCLUSION

This paper has presented an approach to statistical mobile robot mobility prediction based on the stochastic response
surface method. This approach explicitly considers uncertainty present in vehicle and terrain physical parameter
estimates. Simulation results of simplified mobility prediction scenarios have shown that the proposed method
represents a significant improvement over conventional Monte Carlo methods in terms of computational efficiency, and



can be used for robustly and efficiently predicting the traversability of mobile robots in unstructired environments.
Current work is focused on statistical modeling of more complex three dimensional UGV models.
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On the Optimality of Dubins Paths
across Heterogeneous Terrain

Ricardo G. Sanfelice and Emilio Frazzoli

Abstract

We derive optimality conditions for the paths of a Dubins vehicle when
the state space ig partitioned into two patches with different vehicle’s
forward velocity., We recast this problem as a hybrid optimal control
problemn and solve it using optimality principles for hyhrid systems.
Among the optimality conditions, we derive a “refraction” law at the
boundary of the patches which generalizes the so-called Snell’s law
of refraction in optics to the case of paths with bounded maximum
curvature,

1 Introduction

Control algorithms that are capable of steering autonomous vehicles to satisfy
a given set of specifications, like initial and final constraints, and at the
game time, guarantee certain optimality conditions are very appealing to
applications in robotics and aerospace. This has led researchers to strive for
control design tooels that adequately incorporate both trajectory constraints
and measures of optimality. As a consequence, many results from the theory
of optimal control, in particular, thoge that guarantee time optimality, have
found wide applicability in autonomous vehicle control problems.

Perhaps, the earliest result on time-optimal control laws for autonomous
vehicles modeled as a particle moving with constant, positive forward veloc-
ity and with constrained minimum turning radius is the work by Dubins [6].
While Dubing used only geometric arguments to establish his results, a few
vears later, the appearance of Pontryagin’s Maximum Principle in [11] en-
abled the authors in 3| to systematically recover Dubins results. Moreover,




building from the work of Reeds and Shepp [12, the application of Pontrya-
gin’s optimality principle permitted the authors in [20, 3] to derive similar
results for a vehicle model without forward velocity constraints.

In this paper, we consider autonomous vehicles with dynamics governed
by

& = wsinf
lu| <1, 4 = wvcosf | (1)
g = i

where {x,y) is the vehicle’s position, 8 is the angle between the vehicle and
the vertical axis determining the vehicle’s orientation, w is the angular ac-
celeration input for the vehicle, and » is the vehicle’s forward velocity. This
vehicle model is usually referred to as Dubins vehicle. We consider the cage
of heterogeneous velocity along the terrain where the vehicle is deployed.
Two different velocities, vy and wg, define the constant, forward velocity of
Dubins vehicle on two patches of the plane, patch Py and patch Ps, depicted
in Figure 1. We are interested in the following problem:

Find the minimum-time path for Dubing vehicle from an ini-
tial point and angle in patch Py to a final point and angle in
patch Ps.

Figure 1 shows possible initial and final vehicle configurations, which are
denoted by (2% 4",8%) and (' ¢!, 8Y), respectively, for which a minimum-
time path is to be found. Tb the best of our knowledge, the problem described
above has not been addressed in the past, perhaps due to the fact that the
clasgical Pontryagin’s Maximum Principle is not applicable because of the
discontinuous behavior at the common boundary between the patches.

By recasting this problem into an optimal hybrid control problem and ap-
plying principles of optimality for hybrid systems, we establish the following
conditions that illuminate important characteristics of optimal paths:

e The portions of the paths that remain in etther patch are Dubins opti-
mal.

e OUptimal paths are such that, at the boundary between the patches, their
type does not change; that is, the type of path right before and after
crossing the boundary are the same.

29



o Optimal paths that cross the boundary describing a straight line are
orthogonal to the boundary.

o The angles of the path pieces before and after crossing the boundary
satisfy a “refraction” law, which consists of a generalization of Snell’s
law of refraction in optics.

Applications of these results include optimal motion planning of au-
tonomous vehicles in environments with obstacles, different terrains prop-
erties, and other topological constraints. Strategies that steer autonomous
vehicles across heterogeneous terrain using Snell’s law of refraction have al-
ready been recognized in the literature and applied to point-mass vehicles;
see, e.g.; [1, 13]. Our results extend those to the case of autonomous vehicles
with Dubins dynamics.

The remainder of the paper is organized as follows. Section 2 discusses
related background to the optimal contrel problem outlined above and intro-
duces general notation. In Section 3, we present a hybrid model which, as
shown in that same section, enable us to formulate the problem of study in
an optimal hybrid control framework. In Section 4, we establish necessary
conditions for optimality of paths including a refraction law at the boundary
of the patches. Due to space constraints, the technical proofs are omitted
and will be published elsewhere.

T
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Figure 1: Dubins vehicle on an heterogeneous terrain. The initial configu-
ration is given by (z",%%,8%) and the final configuration by {z!,%!,8%). The
forward velocity in patch Py is smaller than the forward velocity in patch Ps.
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2 Background

Pontryagin’s Maximum Principle [11] is a very powerful tool to derive neces-
sary conditions for optimality of solutions to a dynamical system. In words,
this principle establishes the existence of an adjoint function with the prop-
erty that, along optimal system solutions, the Hamiltonian obtained by com-
bining the system dynamics and the cost function associated to the optimal
control problem is minimized. In its original form, this principle is applicable
to optimal control problems with dynamics governed by differential equations
with continuously differentiable right-hand sides.

The shortest path problem between two points with specific tangent di-
rection and bounded maximum curvature has received wide attention in the
literature. In his pioneer work in [6], by means of geometric arguments,
Dubins showed that optimal paths to this problem consist of a smooth con-
catenation of no more than three pieces, each of them describing either a
straight line, denoted by £, or a circle, denoted by C (when the circle is
traveled clockwise, we write C', while when the circle is traveled counter-
clockwise, we write C7), and are either of type CCC or CLC, that is, they are
among the following six types of paths

C-CTeT, ctemeT, ¢Le, cteet, etoem, et Lo, (23

in addition to any of the subpaths obtained when some of the pieces {(but
not ally have zero length. More recently, the authors in [3] recovered Du-
bins’ result by using Pontryagin’s Maximum Principle; see also 20, Further
investigations of the properties of optimal paths to this problem and other
related applications of Pontryagin’s Maximum Principle include |18, 2, 4], to
just list a few.

Optimal control problems exhibiting discontinuous/impulsive behavior,
like the heterogeneous version of Dubins’ problem outlined in Section 1, can-
not be solved using the clagsical Pontryagin’s Maximum Principle. Exten-
sions of this principle to systems with discontinuous right-hand side appeared
in [17] while extensions to hybrid systems include (18, 7], and [15. These
principles establish the existence of an adjoint function which, in addition to
conditions that parallel the necessary optimality conditions in the principle
by Pontryagin, satisfies certain conditions at times of discontinuous/jumping
behavior. The applicability of these principles to relevant problems have
been highlighted in [18, 10, 5]. These will be the key tocl in deriving the
results in this paper.




2.1 Notation

We use the following notation throughout the paper. ™ denotes n-dimensional
Euclidean space. IR denotes the real numbers. R, denotes the nonnegative
real numbers, i.e., R.q = [0,00). N denotes the natural numbers including
0,ie., N=4{0,1,...}. Given k € N, No;, denotes {0,1,...,k}. Given a set
S, S denotes its closure and S° denotes its interior. Given a vector z € R™,
‘x| denotes the Euclidean vector norm. Given U := [—1,1], i denotes the
set of all plecewise-continuous functions u from subsets of R, to U.

3 Problem Statement

In this section, we formulate the problem of steering Dubins vehicle across
heterogeneous terrain as a hybrid optimal control problem. We present a
hybrid model and introduce the optimal control problem. An alternative
approach is to treat this problem as a differential equation with discontin-
uous right-hand side and use the results in [17]. However, a hybrid control
systems approach is not only more convenient from a modeling peint of view
as it enables the use of a sound concept of solution but also facilitates the
application of more explicit optimality principles for hybrid systems, like the
ones in [18].

3.1 Hybrid model

We denote by ‘H, the hybrid system that captures the dynamics of Dubins
vehicle along the patches. Let v1,v5 € R.q, v1 # v3, be the forward velocity
of the vehicle on patch P; and patch P, respectively, where

Pri={lzy0] eR® |y=20}, Poi={lzyd] eR®|y<0},

which share a common boundary Py NPy = {[zy 0] € R® |y =0}, see
Figure 1. Let ¢ be a discrete state taking value in @ := {1,2} that indicates
the current patch to which the vehicle belongs to. Following the vehicle’s
dynamics in (1),

-] e
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with

_— -
£:=|y| €R and folé,u) =
) U

define the continuous dynamics (or flows) of H,, where £ is the continuous
state and w € U is the control input. Then, during flows, £ captures the
vehicle dynamics on the g-th patch while ¢ remains constant. We model the
change of patch so that it occurs when % is zero and the vehicle is moving
away from the current patch. Then, defining a function s : ¢ — {~1,1}
where s{1) = —~1 and s(2) = 1, the discrete dynamics {or jumps) of H, are
given by

g7

which implies that at jumps £ does not change while ¢ is toggled between 1
£T 47 the full state of 7,
Following the hybrid systems framework outlined in (8] and further es-

tablished in [9, 14], we can rewrite H,, as

o~
-
L

} = [‘% £ (J £cPinPy and s{qiv cosd >0,

—

and 2. Finally, we denote by { ==

H { uf == f('f, u) e’
’ ¢ho= 9(Q) CeD

by defining

where O, = P, and D, = {£ € B3 | y = 0,s(q)v,cos0 > 0} for each ¢ € Q.
Then, H, is determined by the data (f,C, g, [7), where f is the flow map, C' is
the flow set, g is the jump map, and D is the jump set. As in [8], solutions to
‘H, are given by hybrid arcs on hybrid time domatns. Hybrid time domains
use a variable £ to indicate flow time and an index 7 to keep track of the
number of jumps, and hence, parameterize solutions by (¢, 7). A subset E of
RegxMis a hybrid time domagn if it is the union of infinitely many intervals of
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the form [t;, t;01] < {j}, where 0 =ty < #; <ty < ..., or offinitely many such
intervals, with the last one possibly of the form [t;, t;01] < {7}, [t;,t11) x {7},
or [t;,00) x {j}. (Note that the ¢ component of elements (¢, 7) € E does not
uniquely define the index 7 since, in this framework, multiple jumps at the
same ¢ are possible.) Then, given a control input u € U, solutions to H,
are given by functions, called hybrid arcs, ¢ : dom ¢ — RY, where dom{ is a
hybrid time domain, t — £(t, 7) is a locally absolutely continuous function for
each fixed 7, t v g(t, j) is a piecewise constant function for each fixed j, and
¢ satisfies the flow and jump conditions mentioned above. More precisely,
given an input u € U, a hybrid arc ¢ is a solution to the hybrid system H, if
¢(0,0) € CUD, dom{ =domu, and:

(S1) For all 5 € N and almost all ¢ such that (¢,5) € dom ¢ T,
{t,9) €C, L) = S0 ),ult, ) -
(S2) For all (t,7) € dom ¢ such that (¢,5 +1) € dom¢,
Ct,7) e D, ({,7+1)=g(CE,7).

Inputs u given as signals ¢ — wu(t) for each t € Ruo can be rewritten on a
hybrid time domain E by defining, with some abuse of notation, u(t, j) :=
u(t) for each (t,7) € E. Note that solutions to H, exist from every point in
CUD = R3x Q. In particular, sclutions are allowed to flow in the boundary
Py NPy with either g =1 or g = 2; such a feature cannot be captured with
a differential equation with discontinuous right-hand side or with a (regular)
differential inclusion without adding extra solutions. Also note that since the
sets ), are not closed subsets of 3, the regularity property for D required
in [9, 14| does not hold (the flow map, jump map, and jump set of ‘H,, satisty
the properties therein). While such a regularity is not required for the results
in this paper to be true, it turns out that, as shown in [14], it highlights the
presence of undesirable solutions if the sets 1), were to be closed or small
noise entered through the state.

3.2 Hybrid optimal control problem

We consider the following hybrid optimal control problem. Given (2°,4% 8%
Ce and (2, y',0%) € C5:

1é(t,j) denotes the derivative of ¢ — {(¢, 7) with respect to ¢ for a fixed j, which exists
for almost every ¢ such that (¢, ) € dom ¢ N (45, 4541] % {4}).
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(x) Minimize the transfer time 7" € Rq subject to:

(C1) Dynamical constraint: dynamics of H, given in (3)-(4).
(C2) Input constraint: u € Y.

(C3) Initial and terminal constraints: every optimal solution (£,q) to
'H,, satisfies the initial constraint {(x(0,0),»(0,0),8(0,0)) = (z°,%",6°)
and the terminal constraint (z(T, J),»(T, J),0(T, J)) = (2,4, 6%)
for some (7, J) € dem(é, g).

The number of jumps required to solve (x) is finite, given by J — 1, and no
smaller than one; hence, optimal solutions to (*) are not Zeno. The initial
and final constraints are such that solutions can flow from some time before
their first jump and after their final jump (that is, the first jump is at some
(t1,0) with ¢; > 0 and the last jump is at some (t;,J — 1) with t; < T').
This is a technical requirement for the application of the hybrid maximum
principle in [18] in the next section.

4 Necessary conditions for optimality

Necessary optimality conditions for solutions to H, solving (x) can be ob-
tained using the principle of optimality for hybrid systems in [18] (see also
19] and [10]). Under further technical assumptions, Theorem 1 in [18] estab-
lishes that there exists an adjoint pair (A, A,), where A is a function and A, is
a constant, which, along optimal solutions to (x), satisfies certain Hamilto-
nian maximization, nontriviality, transversality, and Hamiltonian value con-
ditions. In particular, [18, Theorem 1] can be applied to the optimal control
problem (%) to deduce the following optimality conditions for the paths.

Proposition 4.1 /properties of (x)] For each optimal solution (£,q) to (x)
with optimal controlw, minimum transfer time T, and J—1 number of jumps,
there exists a function A : domA — R3, X :=[a 8 4]T, dom A = dom(¢,q),
where t — A(t,§) is absolutely continuous for each j, (t,7) € dom A, and a
constant A, € R defining the adjoint pair (A, X;) satisfying:

) do > 0 and Atyg) = ~ L (E(t,),7(83), My ult,5)) for almost

every t € [tj,tin1], (t,7) € dom A, where, for each g € {1,2}, H, :
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B3 xR3xRBx <xU — R is the Hamiltonian associated with the continuous
dynamics of H,,, which is given by

H(E, M Ao, 1) = avgsind + B, cos 0+ yu — A,
for each g € Q.

b) There exist @,8 € R and, for each j € Ney, there exists p; € R such
that a(t,7) :=a for all (t,7) € dom(€,q}, B(t,7) := B + p; for almost
all t € [0,7, (t,7) € dom{&,q), and y(t,7) =~(t,7+ 1) for each (t,7)
such that (t,7),(t,7+ 1) € dom A.

¢) Forevery (t,7) € dom(¢, g) such that ¥(t,5) # 0, u(t, 7) = sgn(y(t,7));
and for every (t,7) € dom(&,q) such that y(t,7) = 0, u(t, j) = 0.

d) For every (t,7) € dom(€,q) such that v(t,7) = 0, B(¢,7)tan8(t, 1) =
a(t, 7).

Remark 4.2 The proof of Proposition 4.1 uses the fact that 7, can be as-
sociated with a hybrid system M given in the framework in [18] and that
every solution to H, solving (%) is also a solution to W} (agreeing with the
concept of solution in [18] 2). This property follows by construction of H.
Hybrid systems in [18] and [10] have a continuous state & with flows governed
by £ = fl& u) when & belongs to a smooth manifold M, where ¢ € Q is
a discrete state (which remains constant during flows). Jumps from mode g
to mode ¢ satisfy: 1) the switching condition (£,£') € S, ., where £ is the
continuous state before the jump, £ is the continuous state after the jump,
and S,y 18 the switching set; and 2) a temporal constraint enforcing that the

2In [18], solutions to hybrid systems are given on compact time intervals by abso-
lutely continuous functions & on [t;,t;41] such that, for each 7 € {1,2,...,v} (with
finite » € N) and for finite sequences of logic states {g;} and control inputs {u;}, sat-
isfy the flow condition 5'3.- = fq; (&5(1),u;(t)) for almost all £ € [t;,¢;44] and the jump
condition (&(5),&1(t5)) € Sy, ¢, for each t;, where ¢; denotes the jump time (which
is assumed to belong to the interior of the compact time interval where solutions are
defined) and S, 4., is the switching set at the j-th jump (see [18, Definition 3] for
more details). Hence, passing from a solution ¢ on a bounded hybrid time domain dom ¢
with jumps at different (¢;,7)'s, first jump at (1,0} with ¢, > ¢p, and last jump at
(ty,J — 1) with ¢;5 < T, where T":= sup {t € R>¢ | 37 € N such that(t,7) € dom ¢} and
J:=sup{j €N | 3t € Rs such that(¢,5) € dom ¢ }), to a solution as in [18, Definition 3]
1s straightforward.
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Jump time for the current mode 15 in the set J, C K. To obtain 'HY,, the sets
Cy i 'H,, are replaced by smooth manmifolds M, C, © M,, while the jump
set and the jump map are replaced by the switching condition given by
Spo=81=8={(£¢ |v=0,¢c R}

and J; = Jo = R. Then, the propertics of the adicint pair guaraniced by
J18, Theorem 1] automatically imply item a) in Proposition 4.1 (see [18,
Definition 9/). The condition for optimality at switches for the adjoint state
A implies that only the second component of A, t.e. 3, has a jump while the
other two components are continuous (see Remark 4.3). This implies item
b) in Proposition 4.1. The Hamillonian ma,:u,ma,cm’,‘-.(m condition guaranteed
to hold by /18, Theovem 1] implies that

Hq(t})(‘f(ﬁy j) 3 /\(f’: 7) 3 /\o; ’l.ﬂ(ty ])) - T%( Hq&:l'(g(lv 7)7 )\(‘(1 7}7 )\ (1’)

Jor almost every U € [t;,t;4], (£,7) € domA (see /18, Definition 10{). I
follows that the control .',’au) in item ¢} in Pmpua/tlms 4.1 maorimizes Hq_
By integraling the adjoint stale A when u = 0, Proposition 4.1.d follows
awlomatically. |

Remark 4.3 /18, Theorem 1} implics thal al jumps, the optimal solution,
i ? i 3 - i 3 ?

l)\ K‘ fm" eacb j fm" 'whch' fﬁefre a&s:‘s f € [0 T] bucb thut {t, j) (f j+
1) e dom)\ uhe?e K s the polar of the Boltyanskii approximating cone to

Sett g ity (7S The set S iz such that BL is given by

{w R % R? | (w,0) <0vec S}
since the Bui’tganaku approximating cone to S is the set itself. Then, since
by defi il t on of S the second and fourth components of v in KL are Lero,
(—)\( JA(L 7+ 1)) € K if and only if a(t,j) = u(f;—-l; y(t, 7} =
y(t, 7+ 1), which implies tﬁazt only B can have a jump. This property can
atso br, obtained using the optimality principles in [15]. |



4.1 Optimality of paths

The properties of the adjoint pair (A, A;) and the control input w in Propo-
sition 4.1 can be related to properties of the continuous component £ of the
solutions to (x). These characterize the optimal paths from given initial and
terminal constraints, as the following theorem states.

Theorem 4.4 foptimality conditions of selutions to (%] Each optimal solu-
tion (£, q) to (%) with eptimal control w, minimum transfer time T, and J—1
number of jumps is such that:

a) The continuous component £ is a smooth concatenation of finitely many
pieces from the set {CV,C, L},

b) The input component u is piecewise constant with finitely many pieces
taking valwe in {—1,0,1}.

¢) Each piece of the continuous component £ contained in Cy, g € Q, 18
Dubins optimal between the first and last point of such piece, i.e,, it is
given as in (2).

d) For each (t,7) € dom(€,q) for which (x(t,7),v(t,5),0(t,7)) € Dy,
the solution has a jump and:
d.1) If the path before the jump is C then the path after the jump is C.

d.2; If the path before the jump is £ then the path after the jump is £
and 8(t, 7) is zero or any multiple of 7.

Remark 4.5 The preoof of Theorem 4.4 uses Froposition 4.1 and the fact
that, since the jump condition in 'H, is time independent (that is, J, = J, =
), the Hamiltonian value condition guaranteed to hold by [18, Theorem 1]
implies that there exists h* € I such that

R = Haiij‘\(’:—'(‘(" 7}: )\(f 7): ’\'-Da'u’(t: 7)}

Jor almost every t € [, 4544], (¢, 9) € dom A (see [18, Definition 13]). [
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Figure 2 depicts optimal paths around the boundary of the patches. Item
d.1) in Theorem 4.4 implies that optimal paths that cross the boundary are of
the same type at each side of it. More precisely, if before crossing the bound-
ary, the optimal path is of type C (C* or C ), then the optimal path after
crossing the boundary is also of type C (C* or C, respectively). Figure 2(a)
depicts an optimal path of type C*. Statement d.2) in Theorem 4.4 implies
that L-type paths at the boundary are optimal only if they are orthogonal
to the boundary. Figure 2(b) depicts this situation.

P P
T r g
L
Py NPy H Py NPy
C+ /L
Pa Pa
(a) CT-type of path at the bound- (k) L-type of path at the boundary.
ary. Path pieces CT in patch P The angle between the path and the
with radius 71 = v1 and In patch boundary in each patch is 7 /2.

Pa with radius ro = va, 2o > 2.

Figure 2: Optimal paths nearby the boundary: paths of types Ct and £
satisfying the necessary conditions in Thecrem 4.4.

Using Theorem 4.4, it is possible to determine optimal families of paths
for a class of solutions to (x). The following statements follow directly from
Dubing’ result and Theorem 4.4.

Corollary 4.6 [optimal paths w/one jump/ Every optimal solution (£,q) to
(* ) with only one jump is such that the continuous component £ is a smooth
concatenation of C, L paths pieces and is given by one of the following four
types of paths

C1L1CLoC5, CilaCalyCy, CiCCCH0s, C1LIGCCy (5)
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in addition to any such path obtained when some of the path pieces (but not
all) have zero length. Furthermore, if the path piece intersecting the boundary
is of type L, then the continuous component £ describes a path of type C1 £1C;
(or any such path obtained when C; and/or Cy have zero length).

A consequence of Theorem 4.4 that is useful when computing optimal
paths is the following.

Corollary 4.7 [nonoptimal paths] For the optimal control problem (%), solu-
tions to 'H, satisfying (C1)-(C3) with the continuous component & describing
paths that change at the boundary are nonoptimal, that is, paths that before
and after the boundary are given by CT and £, C~ and £, £ and CT, £ and
C™,CT and C~, or C~ and CT, respectively, are nonoptimal.

! i

Figure 3 depicts two of the path types that Corollary 4.7 determines to
be nonoptimal.

P (&
[ ct- ﬁ\
PPy PPy
c o
-

Py Py
(a) Nonoptimal Ct/C~-type path at (b) Nonoptimal £/C~-type path at
the boundary. Path piece CT in the boundary. Path piece C~ in
patch Py with radius 71 = v; and patch Pz with radius ro = va.

path pilece C~ in patch Ps with ra-
diug ro = vg, v > v1.

Figure 3: Nonoptimal paths at the boundary: paths of type C*/C~ and £/C~
changing at the boundary and hence, not satisfying the necessary conditions
for optimality in Theorem 4.4.
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4.2 Refraction law at boundary

The optimal control law given in Proposition 4.1.c and the properties of the
component 7y of the adjoint state A given in Proposition 4.1.b imply that the
control law is constant at jumps of ‘H, (note that w is piecewise continuous
for each fixed 7 with discontinuities at (¢, )’s where the path type changes).
While € remains constant at the boundary, the initial and final angles {and
their variations) of the paths intersecting the boundary satisfy the following
algebraic condition involving the patch velocities v; and wvs.

Theorem 4.8 [refraction law for (x )] Let (£,q) be an optimal solution to (x ).
Let 61 and 65 denote the initial and final angle, respectively, of a path piece
intersecting the boundary Py M Ps, as show in Figure 4. Let AO;, Af; € R be
given by A0y = 0% =0y, A0y := 0:— 0%, where 8* is the angle between the path
and the boundary Py N Py at their intersection (with respect to the vertical
azis). If the path piece intersecting P11 Py is of type C, then vy, va,6y, 62, Ay
and Afy satisfy

vy 1+ cotfacot (A=Al o Bl )

= ) (6)

vy 1 + cot &y cot (Migmz + 91;92)

and if the path piece intersecting Py (P is of type L, then 6; and 6 are
equal to .

Remark 4.9 Fquation (6) in Theorem 4.8 implies that for a path of type C
intersecting P1MPs to be optimal, 81, 05, AG; and Aby shown in Figure 4 must
satisfy (6). When the path intersecting P1Py is of type £, by Corollary 4.6,
the path £ is orthogonal to P1 NPy and consequently, there is no “refraction”
at the boundary. This is depicted in Figure 2(b). The proof of Theorem 4.8
follows from the properties of the optimal solution and adjoint state at jumps
stated in Theorem 4.4 and Proposition 4.1.d. |

Equation (6) can be interpreted as a refraction law at the boundary of
the two patches for the angles (and their variations) 8;,6, (and A8y, Afs).
This parallels Snell’s law of refraction in optics, which states a relationship
between the angles of rays of light when passing through the boundary of two
isotropic media with different refraction coefficients. More precisely, given
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Py

th
oL
"2 7 »CT
Af N
_AQ 71 M 7)2
2
+
73 e
~L
Py
{(a) Refraction for £LCL-type of path (b) Refraction for CCC-type of path
nearby the boundary. The £ path nearby the boundary. The tangents
pieces define the angles 81,6, and (plotted with .— lines) at the point
their variations A, Al of path change define the angles

81, 02 and their variations Afy, Afg.

Figure 4: Refraction law for paths at the boundary. The initial and final
angles of optimal paths intersecting the boundary given by €; and &, re-
spectively, and their variations (A8, Af;) satisfy equation (6), which is a
generalization of Snell’s law of refraction.

two media with different refraction indexes v; and vs, Snell’s law of refraction
states that

vy sindy

(7)

where 6; is the angle of incidence and 85 is the angle of refraction. This
law can be derived by solving a minimum-time problem between two points,
one in each medium. Moreover, the dynamics of the rays of light can be
associated to the differential equations & = v;, where v; is the velocity in the
i-th medium, 7 = 1,2. Theorem 4.8 generalizes Snell’s law to the case when
the dynamics of the rays of light are given by (1). In fact, (6) reduces to
(7) when A8, = 6, and Af; = #5. In the context of autonomous vehicles,
(6) consists of a generalization of the refraction law for optimal steering of a
point-mass vehicle, as in [1, 13], to the Dubins vehicle case.

Ve sin@y
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To further illustrate our results, consider v; = 2vy > 0, (z%,¢°,4%), and
(xl, 9!, 0) as depicted in Figure 5. A path corresponding to a solution to H,

Py P

- i

(2,5 6°) (2", 9%, 6°)

/Pg /(“‘;aylagl) 732 ‘/(-T.laylagl)

{(a) (Nonoptimal) path of type CLC. (b) Path of type CLCLC.

Figure 5: Optimal control of Dubins vehicle on patches with velocities v; =
2v5. The path depicted in (a) is nonoptimal since its L£-type piece is not
orthogonal to the boundary P; M Py (it is also nonoptimal since it does not
exploit the fact that the maximum velocity in patch P; is twice faster than
in patch Ps). The path depicted in (b) is a candidate for optimality as it
satisfies the conditions in Theorem 4.4 and Corollary 4.6.

matching the initial and terminal constraints is shown in Figure 5(a). Since
the L-type path piece smoothly connecting the C-type paths at (z%,¢°,6%)
and (z!,%!,0') does not intersect the boundary Py M P, orthogonally, The-
orem 4.4.d implies that it is nonoptimal (see also Corollary 4.6). Note that
this path is not taking advantage of the fact that in patch P;, the vehicle
can travel twice faster than in patch Ps. Paths candidate for being opti-
mal are like the one depicted in Figure 5(b) as it satisfies the conditions in
Theorem 4.4 and Corollary 4.6.

5 Conclusions

We have derived necessary conditions for the optimality of paths with bounded
maximum curvature. To establish our results, we formulated the problem as
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a hybrid optimal control problem and used optimality principles from the
literature. Our results provide verifiable conditions for optimality of paths.
These include conditions both in the interior of the patches and at their com-
mon boundary, as well as a refraction law for the angles which generalizes
Snell’s law of refraction in optics to the current setting. Applications of our
results include optimal motion planning tasks for autonomous vehicles with
Dubing vehicle dynamics.
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A Hybrid Control Framework for
Robust Maneuver-based
Motion Planning

Ricardo 4. Sanfelice and Emilio Frazzoli

Abstract

We introduce a modeling framework for robustness of maneuver-
baged motion planning algorithms for nonlinear systems with sym-
metries. Our framework implements a hybrid controller that robustly
combines maotion primitives, which consist of trim trajectories and ma-
neuvers, from a pre-defined libhrary. The closed-loop ayatem is viewed
ag a hybrid system with flows given by a differential equation, jumps
given by a difference equation, and two gets where thege dynamics are
allowed. We ghow that our hybrid controller for implementation of
motion planning algorithrns confers to the closed-loop system robust-
ness properties to a large class of perturbations.

1 Introduction

Motion planning algorithms are commonly applied in robotics as a method
to solve steering problems. In a real-world scenario, the motion planning
task needs to be accomplished in the presence of obstacles, measurement
error, exogenous disturbances, and unmodeled dynamics. To guarantee some
degree of robustness, motion planning algorithms are usually blended with
feedback control algorithms, which track the output of the motion planner;
see, e.g., [1,11,12,14, 18]

The motion planning problem itself is typically recast as an optimal con-
trol problem with cost function and constraints stemming from the given task
to be accomplished along with its specifications. In complex motion planning
problems, online computation of optimal control policies is not always feasi-
ble. A motion planning technique suitable in such cases was proposed in [6]

=3l
I

I
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for general nonlinear systems with symmetries. A motion plan in [6] is given
by a concatenation of a finite number of motion primitives selected from
a pre-defined library and implemented in a maneuver automaton. Motion
primitives were defined in [6] as equivalence classes of trajectories, induced
by symmetries in the system’s dynamics, e.g., invariance with respect to time,
translations, and rotations.

One of the main features of the maneuver-motion based approach is that
each element in the motion primitives library can be designed off-line subject
to particular specifications, like optimality, state constraints, ete., relaxing
in this way on-line computation requirements; see, e.g., its applications to
robotics in [5,7,18]. However, this method combines motion primitives in
an open-loop manner, which restricts its application to nominal scenarios,
that is, those without perturbations. Moreover, the fact that the trajectories
resulting from this approach are not necessarily smooth, renders the task
of robustifying motion plans via feedback control challenging since standard
trajectory tracking control design techniques are not applicable.

In this paper, we propose a hybrid control algorithm that executes maneuver-
bazsed moticn plans and combines state feedback control laws for nonlinear
systems with symmetries. The purpose of our hybrid controller is to provide
a control framework for maneuver-based motion planning featuring robust-
ness properties to perturbations. We show that this framework results in a
hybrid system with implementable semantics, and hence, useful experimental
setups. This class of hybrid systems has been recently introduced in (8, 9]
motivated by the pursue of robustness of asymptotic stability. Our conirol
framework for maneuver-based motion planning also borrows ideas from the
techniques in (16| for robust combination of state feedback and open-loop
controllers, and also from the invariant constructions in |4].

The paper is crganized as follows. Section 2 introduces notation and basic
definitions regarding nonlinear systems with symmetries, motion primitives
and plans, and hybrid systems. Section 3 introduces our hybrid control
framework for motion planning, while Section 4 states its main properties.



2 Preliminaries

2.1 Notation

It denotes the real numbers. K., denotes the nonnegative real numbers,
ie., Rug = [0,00). N denotes the natural numbers including 0, ie, N =
{0,1,...}. Nep (Nep) denctes numbers in N from 0 to & — 1 (from 0 to
k, respectively). R™ denotes the n-dimensional Euclidean space. B de-
notes the open unit ball in a Euclidean space. CGiven a set S, S denoctes
its closure and 5° denotes its interior. Given sets 57, 5s subsets of R™,
S1 4+ 8y = {xy + 23 | 2y € 51,22 € S5}, Given a vector x € R”?, |z| de-
notes its Euclidean norm. The equivalent notation [z7 »']T, [z »]T, and
(z,y) is used for vectors. Given a function f : R™ — " its domain of
definition is denoted by dom f; ie., dom f := {x € R™ | f(z) is defined }. A
function a : R>p — Rsq is said to belong to class K, if it is continuous, zero
at zero, strictly increasing, and unbounded. PC°(R.q, R™) is the set of all
piecewise continuous signals 3 : dom £ — R™, dom 8 C Rx,.

2.2 Motion planning for nonlinear systems with sym-
metries

We consider nonlinear control systems of the form
P 2= flzu) (1)

where f : R* x R™ — R"™ is a locally Lipschitz function, z € R"™ is the
state, and u € R™ is the control input. We focus on a particular subclass of
nonlinear systems P, those satisfving certain symmetry properties. Next, we
review and adapt some of the concepts in [6] for the purposes of this paper.

2.2.1 Nonlinear systems with symmetries

A large class of mechanical systems are invariant under certain transforma-
tions of their state. These include mobile robots as well as more general
autonomous vehicles, like several helicopters and airplanes models, among
others. General invariant transformations can be characterized with the the-
ory of Lie groups (see (2] for an introduction to Lie groups and [13] for
applications to mechanics).
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Let G be a finite-dimensional Lie group, and let e be its identity element.
[t is said that W is a left action of the group G on R" if ¥ : G x R* — R”
is a smooth map such that U(e,z) = z for all x € R”® and U(g, U(h,z)) =
U(gh,z) for all g,h € G, x € R™. Let g be the Lie algebra of G.

Definition 2.1 (symmetry of P) The nonlinear system P is invariant with
respect to the left group action U if for all ¢ € G, 2° € B™, and p <

PC* (R0, R™), each solution (in the appmpm’ate sensel ) to P startz’ng from
z withu(t) = p(t), denoted by t — ¢z, u;t), is such that U(g, ¢z, u;t)) =
AW (g, %), p;t) for all t = dom ¢. [

Definition 2.1 states that ‘P is invariant if the left action ¥ commutes with
the map from initial conditions.

2.2.2 Library of motion primitives

Trim trajectories and maneuvers define our “library” of primitives for motion
planning; see also (6, Section I11].

Definition 2.2 (trim) A C! function z : [0,7] — R" is a trim trajectory
for P if there exists £ € @, called the trim velocity vector, and p € R™, called
the trim input, such that

x(t) = W{exp(&t),z(0)) forallt € (0,7, (2)
w(t) = flz(t),p) for almost allt € [0,T]. B

When the right-hand side of P is locally Lipschitz, every trim trajectory z
for P is uniquely defined by its velocity ¢ and initial condition z". We shall
assume the following property throughout the paper.

Standing Assumption 2.3 The function f : R® x R™ — R" is locally
Lipschitz continuous. The nonlinear system P is invariant under the action

of U. ]

Then, for the nonlinear system P with symmetry group G, we store & and z°
in the set of trim trajectories, which is denoted by T(P,G) C g x R™.

1This property deoes not depend on the notion of solution used. Tt is required to hold
for each (perhaps nonunique) solution to P on its domain.
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Definition 2.4 (maneuver) A C1! ﬁm'ﬁen z [0, T] ®™ s a maneuver
for P if there exist a function 3 € PC" (Roo, 8™, called the maneuver input,
such that

(t) = flx(t), 3(1) Jor abmost all £ < (0,7 ;

g € G, called the maneuver displacement, safisfying

and trim trajectories x' - 0,717 — R™ 2" . 10,7 — R™ that are compatible
Wth x, i.e., there exist matching displacements g', ¢" € G such that

(T =g, x(0)), =(T)=P(g", 2"(0}) . |

#

».h\

¢ in Definition 2.4 quar-

antee that trim trajectories and maneuvers can be concatenated. More pre-
cisely, the left action ¥ with displacement ¢ gquarantees that the end point
of the (left compatible) trim trajectory o' can be concatenated with the initial
point of the manewver x, while the left action W with displacement ¢” quar-
antees that the initial point of the {right compatible) trim trajectory @ can
be concatenated with the final point of the maneuver x. |

Remark 2.5 The matching displacements ¢' and g

Maneuver information for P with symmetry group ¢ is stored in the set
M(P,G). By the regularity properties of f, a maneuver # for P can be gen-
erated by only knowing the input 8 applied to P and the initial condition z.
By construction, the application of 4 at 2° causes a maneuver displacement
given by ¢ € G.

Following the definitions above, a “library” of motion primitives for P
with symmetry group G is given by (7(P,G), M({P,G)). Let Oy, Op C N
be compact and disjoint sets, and define @ = Q7 U @ar. The set Qr (re-
spectively, (Jas) is such that each of its elements is uniquely associated to
a trim tra]'ectorv (respectively, to a maneuver}. More precizely, for each

€ Qr, (&7, Dy € T(P,G) defines the trim trajectory z,(t) = U{exp({,t), z2)
mth z,(0) - LL“ Whlle for each ¢ € Qun, (3, q,gq,Tq_) € M(P,G)
PL""fIR-O R™) % E _“‘ % G x I correspond to the input to generate the ma-
neuver from 3:,,, which, after T, units of time, results in a displacement
given by g,.




2.2.3 DMotion plan

A motion plan v is denoted by

v {(gl,:fh}: (\QQaQFQ,Qg)‘ (:gi%.ﬁTQ‘SI,)? :
i ! ey b
o\ Gk—1, 1, 91}y (Qk: Tq,«\} ’

where & £ Nos s an odd number and:

s

e For each odd number j € Neg, g; € Op.

W

e For each even number j € Nop, g5 € (Jar and the j-th maneuver is com-
patible with the (7 - 1)-th trim trajectory with matching displacement
g; and with the (7 + 1)-th trim trajectory with matching displacement

I
G-

e For each odd number j € Moy, 7, € Ryp defines the time to execute
the g-th trim trajectory. The 1 Jnneudlno constant 7, for the last
trim trajectory can be either finite or infinite.

In other words, a motion plan » is given by a sequence "vj}”‘?' 1, where
Vo,V ..., U1 are such that gz, qq, ... 9x 1 € (ar define maneuvers and
v1,Ua, . .., vg are such that g1, g, . . ., g, € Qg define {compatible) trim trajec-
tories. (Alternatively, and witho uL d[,[ectmg the results in this paper, motion
plans can be defined as in [6].} We denote by V(P, G) the set of motion plans
for P with symmetry group G generated from (7 (P, G), M{P,G)). Figure 1
depicts a sample trim-maneuver-trim piece of a motion plan v € V(P,G).

2.3 Hybrid systems

The hybrid control framework proposed in this paper for maneuver-based
moticn planning follows the general model for hybrid systems in outlined
in [8) (see also [9,17]). Hybrid systems are dynamical systems with continuous
and discrete dynamics. In 8], a hybrid system H is given by a flow map, a
flow set, a jump map, and a jump set. For the purposes of this paper, the
state of the hybrid system, denoted by (, takes values in ", the flow map
is given by a function f : E* — " and the flow set, dencted by & < ™,
define the flow equation # = f(xz),z € C'; while the jump map iz given by a
function g : ™ — K™ and the jump set, denoted by D < B"™, define the jump
equation x7 = g{z),z € D). Continuous evolution of the sc-lutlons (or flows)

o
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| '+ Ty o+ T+ Ty,

Figure 1: Sequence of entries of a motion plan v: v;_ = (g;-1, T5,_, ) defining
trim trajectory y,_,, v; = (qj,g’qj,g;’j) defining maneuver z,,, and v, =
(@j+1,14,,,) defining trim trajectory z,, ..

to H is permitted only when the solution is in €' and discrete evolution (or
jumps) is allowed only when the solution is in ID. Hence, a hybrid system H
has data (f,C, g, D) and can be written as

. n = fle), =z&C
L zelk {x+ = g(xz), reD.

To define solutions to H, the number of jumps is treated as an independent
variable j and the state is parametrized by (¢, 7). A solution is a function
defined on subsets of g x IN. A subset I C Ryo x N is a compact hybrid
time domain if

J—1
E= U ([tjztj%»l}zj)

i=0
for some finite sequence of times:r 0=ty <t;... <ty Itis a hybrid {ime
domain if for all (T',J) € E, E 1N (][0,7] x {0,1,...J}) is a compact hybrid
domain. On each hybrid time domain there is a natural ordering of points:
(t,7) < (', 7 ift <t and 7 < 5. A hybrid arc is a function z : domx — R”™
on a hybrid time domain domx such that z(t, 7} is absolutely continuous in
¢ for a fixed 7 and (¢,7) € domz. It is a solution to the hybrid system H if
z(0,0) € C'U D and

(S1) For all j € N and almost all ¢ such that (¢, j) € domz,
z(t,g) €, z(t,j) = f{z(t, 7))

(S2) For all (¢, 4) € domz such that (¢,7 4+ 1) € dom 2,

z(t,j) € D, x(t,7 + 1) = g(z(t, 7).
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A concept of closeness of solutions to hybrid systems is as follows. Two
solutions z : domx — K", y : domy — R™ are (T, J, £)-close if:

(a) for all (¢t,7) € domz with ¢t < T, j < J there exists s such that

(s,7) € domy, |t — 5| < &, and
11(117) f()j(%,j’” < E

“1

(b) for all {¢t,5) € domy with ¢ < T, 7 < J there exists s such that
(s,7) € domaz, t —s <&, and

< &,

Note that this closeness concept does not require soluticns to be close at
jumps at the same hybrid instant (¢, 7). See

8 and [9) for more details.

3 A hybrid controller for motion planning

Given a motion plan v € V{P,G), our goal is to design a controller generating
a trajectory of P that satisfies the motion plan specifications given in terms of
a finite sequence of trim trajectories and maneuvers from (T (P, Gy, M{P,G)).
We propose a hybrid controller, denoted by H,, with:

e logicstate g € (J to indicate the system mode: #rim mode when g € Qp,
manenver mode when g € (Jay.

o logic state p € N to select an entry of a given motion plan v € V(P,G).

e displacement state » € G to store the overall displacement of the tra-
jectory of P.

o timer state 7 £ IR to keep track of the time in maneuver mode and to
parametrize the reference trajectory during trim mode.

The output of the controller, that is, the input of P, is

where w, : B x ( x R — R™. The input to H, is the state z of P.

o
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3.1 Control strategy

— R

Given a motion plan v € V{P,G), let ¢ = ¢; € {7, 7 € Nep. The controller
‘H. performs the following tasks:

Task 1) Trim Trajectory Tracking: Track the trim trajectory z,, where
g is defined by (&, z3) € T(P,G) via (2).

Task 2) Maneuver Execution Start: When the state x is such that the
maneuver . ,, which succeeds the trim trajectory z,, can be executed and
the timer elapsed for at least 7, units of time, update ¢ to g;.y, reset timer
T to zero, and execute the (j 4+ 1)-th maneuver.

Task 3) Manewver Execution End: When the state « is such that the
trim trajectory z,, , can be executed and the timer 7 has elapsed for at least
T, units of time, update ¢ to gjo0 and perform Task 1) if 4+ 2 < k.

Execution of trim trajectories in Task 1 is performed in closed-locp with
a local tracking controller that guarantees z(t) — z,(t) asymptotically. Ma-
neuvers are started when: 1} the timer has elapsed for at least the duration
planned for the predecessor trim trajectory, and 2) the state reaches a set
from where the maneuver can be executed (the latter corresponds to Task 2).
The frim trajectory that follows every maneuver is started as soon as the
state x is in the set where tracking is possible and the timer has elapsed the
specified amount of time for the maneuver.

2

3.2 Control design
The following assumption guarantees that Task 1 can be accomplished.

Assumption 3.1 (tracking of trim trajectories) For each q € Qr, there ex-
ists a continuous function kg R® 3 Rug — B, a continwously differentiable

Junction Vy : R™® — L\;,:Q; class-K o, functions ué,uji and an open neighbor-
hood of the origin B, C R™ such that
o (le]) < V,(e) < '1f2/3P") Ye o B7
X ) = Vle) S L,qL;\,-;‘ L |
17 g A LY AN R f
(Vale), flehy = —Vile) Ve € By, {4)
where [ K™ — K™ ig given by

W, where z, 15 the trim trajectory generated by p,.
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Remark 3.2 In addition to the invariance property, Assumption 3.1 quar-
antees the existence of a local controller, with basin of attraction B,, which ac-
complishes asymptotic tracking of trim trajectories. Additionally, each track-
ing control law kg is such that, when applied to P, result in a time-invariant
error system with e 1= x—x, having the symmetry property. This assumption
holds for nonlinear systems that can be put in feedback linearizable normal
form [3, 10] with error system that is invariant under the action of W [15].
[

The construction of the flow and jumps sets of 7, follows. By the conti-
nuity properties of maneuvers in Definition 2.4, for each maneuver z, with in-
put 3, and maneuver duration T, ¢ € {Jas, there exist disjoint and open sets
Sy Ly € R™ such that for each 2,(0) € 5,, 2,(T},) € Ly, ,(t) = flzg, B,(1))-
For each ¢ € Qpr, pick compact sets D, such that D, C S, and xg € Dy, and
define Oy == R"\ D,. The set D,, g € Qas, corresponds to the maneuver’s
start set in Task 2.

We now compute the set of points from where tracking of trim trajectories
is possible. By construction, there exist £* > 0 such that

£ ;= argmax {xg +eBC S, Vg€ Quplt.
£20

Using Assumption 3.1, for each ¢ € Qr, define
Dy:={eeR* | Vyle) < ¢} ,
where ¢, > 0 is such that
D, C (zy +6,B) N B, , §; = (af) " (exp(Ty)as(e")) ,

and (af)~! is the inverse of the function af. Define C, :== k™ \ D,. This
construction yields a constant d, such that when the trim trajectory z,(t) is
tracked from initial conditions in [J;, the state x belongs to a subset of the
start set of each of the maneuvers in M{P,G) after T} units of time have
elapsed (7} is the execution time of the trim trajectory given in the motion
plan).

The following assumption guarantees that maneuvers take trajectories to
points where trim trajectories can be executed.
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Assumption 3.3 (nested condition) For every motion planv € V(P,G),
every maneuwver with assoctated entry v; in v and input 3,,, its associated set
Ly, is such that

where Dy, 15 the set assoctated with tracking of the trim trajectory z,.,,
gir1 € Q.

Remark 3.4 The condition in Assumption 3.3 assures that, after a maneu-
ver, the state x is in a set from which tracking of the trim trajectory succeeding
it 15 possible. This condition holds by picking small enough landing set L,
when Assumption 3.1 is in place. However, in order to get practical robust-
ness results, the landing sets are usually fized. In such cases, the tracking
law in Assumption 3.1 should be chosen to have large enough set Dy, q € Q7.

[ |

Figure 2 illustrates the sets designed above.

g-th maneuver

(a) Trim sets. (k) Maneuver sets.

Figure 2: Sets of the hybrid controller for a trim trajectory and maneuver in
the motion primitive in Figure 1.

3.3 Hybrid controller

The control logic outlined above is implemented in the hybrid controller 'H,
as follows,
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3.3.1 Jumps

it is not the last trim
trajectory of the motion plan) when the state x reaches the set of points where
the maneuver z,  , can be started and the timer 7 has elapsed for 7}, units of
time. The set in the first condition is given by L), ., g1 € Qar, after the left
action ¥ with displacement given by z multiplied by the nominally expecﬂted
trim trajectory displacement exp(&,7,) and the matching displacement g

Jumps occur while in trim mode with p < & {i.e.,

Then, jumps cccur when ’q "
€ Qp and x € Y{zexp(E,T1, )ng Dy, )and T > T, (5)

with update law
g7 = g, pT =+ 1, 2T = exp(&r), T =0 6

that is, g is mapped to the next mode in the motion plan », the motion
plan index p is incremented by one, z is updated with the current total
displacement of the motion primitive, and 7 is reset to
While in maneuver mode, jumps occur when the state reaches the set of
points where the trim trajectory xz,, ., can be started and the timer state 7
has elapsed for at least T, units of time. As in the case for jumpg during
trim mode, the set in the former condition is given by D, ¢ € (Jar, after
the invariant operation ¥ with displacement given by =z multlphed by the
planned maneuver trajectory displacement, which is given by g,, and the
matching displacement g Then, jumps in maneuver mode occur when

Zero.

q € @y and x € Wizgug), Dy, ) and 7 > T, {7}

-

with update law

T =Gy, pT=p+l, 2T =z2q, TT=0. (8)

3.3.2 Flows

During flows, the controller variables have dynamics given by

G=0, p=0, :=0, +=1, (9)
when
g € Qr and (x € W(zexp(§T,)0, . Cypy ) or T € [0, 1)), (10)
or
g€ Gy and {z € Uz gqq Copoi)orme [0,T,) (11)
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3.3.3 Output

The controller cutput is the input to P and is given by @ = s.(x,q, 7} where

w . By ifgeQu
FL-CK\SC, q? ’F) * . 7 f -

| #olz,7) ifge Qr .
T'he function 3 is the control input that generates the g-th maneaver, g €
(Jas- The function s, is the tracking control law in Assumption 3.1 for
the g-th trim trajectory, g € &)y, which is designed using trim trajectory
information.

3.3.4 Closed-loop system

We denote the closed-loop system resulting from controlling 7 with H, by
Ho and its state by ¢ = (z,0,p,2,7) € & = B" x Q x N, x B x B,
where the Euclidean space R embeds G. The continuous dynamics are given
by closed-loop plant dynamics & = f(z, k.(z, ¢, 7)) along with (9}, with flow
set given by the union of the sets defined by (10} and (11). The discrete
dynamics are given by the update laws in (6) and (8). The resulting closed-
loop system H, can be written in the compact form in (2.3) using ¢ as the
state and appropriately defining functions f, g and sets C' and ).

4 Motion plan execution:
nominal and perturbed case

that 2, = W{gy, z_ ), let r : domyr — K" describe the desired trajectory of

Given a motion plan » and an initial configuration {22, g% € B™ x G such

n
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the nominal motion plan #, that is:

It - q
g 1 lff = i,‘ T ia
T(gl, (1) ond i 0
, ) : oy it tE [T, Ty,
Ulgy exp(& T1)o1, 20 () 050
| o L ifte [Ty, T,
'F(t, j) q,r L'?z(' OXPL‘EQl ll)g;’,: ;I")Q%L'ﬁ)) and 7 2 ’
£ i ]i
U(g, “\Pk‘wm )»'1 te To, Tk
cexpl(é,, [T 1\%,/1” () ?m:{?“: .

qu c T(P,G), x,, is the maneuver
with (3,,, Lq, Ggoy 15.) € M{P,G), ete. Note that each jump of v corresponds
to a change of motion primitive. For example, for each {t,7) € [0,771] x {0},
'r'('f 4) is given by the gi-th trim trajectory, and after the jump at ¢ =711,7 =
0, and for all {¢,7) € [11,75] = {1}, »{¢,7) is given by the q,J-Lh maneuver.

where x,, is the trim trajectory with (&, 2

The duration of the motion plan v is 1, = 37, 71 l" Do w1 La-
When T, is finite, domr is a subset of [0, T:] % {0,1,2,... . k—1}, while when
T, is infinite, domr is a subset of [0,00) % {0,1,2,...,k — 1}

Theorem 4.1 {nominal execution) Let Assumptions 3.1 and 3.3 hold. For
cach v € V(P,G) with nominal motion ;D/(m trajectory v and each (x,gY) €
R™ % G such that x; = ¥(g,, 27, ), ((W[.,[ ‘,) - T{P,G), there exists a unique

solution ¢ to Hy from ¢(0,0) = (22, q1,1,6%,0) that is bounded and is such
that the x component satisfies x(¢,j) =r Uf,?lj‘ j(n‘ all {t,7) € dome.

Bemark 4.2 Theorem 4.1, which follows by construction, states that every
motion planv € V{P, Eﬂ 8 p?“r)p?i“fg executed by H,. This result recovers the
nominal motion plan execution property of the hybrid automaton in 6], W

In addition to the nominal property in Theorem 4.1, the proposed hvbrid
control construction guarantees that, under the presence of perturbations,
motion plan execution stay close to a nominal one. Note that the presence of
perturbations in H, on the initial conditions, parameters, and/or the state
affects the jump times. In this way, the domain of the e‘«ultmm trajectory



does not need to coincide with the domain of the nominal trajectory r as-
sociated to v € V(P,G). The (T, J,)-closeness notion of distance between
hybrid arcs in Section 2.3 handles such a situation.

Theorem 4.3 {perturbation of initial conditions) Let Assumptions 3.1 and
3.3 hold. For each v € V(P,G) with nominal motion plan trajectory r and
each (xy,gy) € R™ x G such that z) = W(gy,x7 ), (&,,20,) € T(P,G), each
£ > 0, each compact set K C B, and each (T,J) € Ruo x N, (T, J) <
(T, k—1), there exists § > 0 such that every solution ¢s to Hq with ¢s(0,0) =
(22, q1,1,92,0), 2y € K + OB, is bounded and the x component and 7 are
(T, J,=)-close.

Remark 4.4 The time horizon (I, J) where the closeness property in Theo-
rem 4.3 holds can be picked to be equal to (T, k —1) when T, is finite. Then,
closeness between the component x of the solution and r is quaranteed in the
entire duration of the motion plan. The hybrid time domain of each solution
to Hy can be extended to an unbounded one without affecting the behavior of
the system up to time (T,J). In addition to the regularity properties of the
closed-loop system (gquaranteed by the standing assumption and the hybrid
controller construction), the proof of Theorem 4.3 extends the hybrid time
domain to an unbounded one to enable the application of results in [9] for
hybrid systems with perturbations. [ ]

Under the presence of perturbations, system P controlled by H can be
written as
&= flz,klx + di(t),q, 7)) + dalt) | (13)
where d; corresponds to error in the measurements of z and dy models other
exogenous disturbances and unmodeled dynamics. The addition of these
perturbations in the closed-loop system H, results in a perturbed hybrid
system, denote as ﬂcg, which can be written as

¢ = fle+da)+d(t) ¢+deC

et = 3(p) o+dieD,

The following result asserts that the motion planning is robust to a class
of perturbations. 2

2The exogenous signals dq and dz are given on hybrid time domains (given a hybrid
time domain & and an exogenous signal dy (), we can define, with some abuse of notation,
dy (¢, 7) := d1(¢) for each (¢,7) € 8.) Solutions to hybrid systems with the perturbations
above 1s understood similarly to the notion of sclution outlined in Section 2.3.
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Theorem 4.5 (perturbations) Let Assumptions 3.1 and 3.3 hold. For each
v € V(P,G) with nominal motion plan trajectory r and each (z2, g°) € R* <G
such that x) = W(gy, 25 ), (&, 2] ) € T(P,G), each = > 0, each compact set
K C By, and each (T, J) € Rog x N, (1T,J) < (1, k — 1), there exists § > 0
such that every solution ¢ to Hy with 3(0,0) — (2°,¢1,1,42,0), 2° € K+ 6B,
|di(t, 7} <0 and |ds(t, 7)| <& for each (t,5) € dom ¢, is bounded and the x
component and the motion plan trajectory v are (1", J,=)-close.

Remark 4.6 The proof of this result uses a technigue from [3, Section V]
in which a perturbed hybrid system H’ is embedded into a set-valued hybrid
system. Using the hybrid time domain extension as in Theorem 4.3, the
results follows from [9, Corollary 5.5]. [ |

0.8+

0.6

0.4-

0.2+

Figure 3: Motion primitive (dashed) in Figure 1 and simple airplane trajec-
tory resulting from applying our hybrid control strategy for motion planning,.
Tracking control during trims (red pieces) guarantees that solution and trim
trajectory are stay close. Maneuver starts from a peint nearby the maneuver
(blue piece) in the library and remains close to it.

Finally, Figure 3 illustrates a solution to ‘H,; starting nearby the motion
plan in Figure 1. This corresponds to a simulation result from a toolbox for
robust maneuver-based motion planning, currently under development.
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5 Conclusion

We presented a hyvbrid systems framework for maneuver-based motion plan-
tems with symmetries. We systematically

ning algorithms for nonlinear s
described the construction of a hybrid controller and showed its robustness
properties for a large class of perturbations. Our results are built upon recent
tools for robustness of stability for hybrid systems. Extensions of the hybrid
control strategy to situations where bounds on the perturbations are known
beforehand fellow from the ideas presented in this manuscript and will be
closely explored in the future.
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Discussion on
“Optimality Properties and Driver Input Parameterization for Trail-Braking Cornering”

Emilio Frazzoli
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

1 Overview

The paper by Velenis, Tsiotras, and Lu [5] is a very interesting contribution towards the development of au-
tomatic control systems able to push the performance envelopes of autonomous vehicles and mobile robots.
In fact, while automatic control techniques routinely show superior performance (with respect to humans},
e.g., interms of set-point regulation, the dexterity and nimbleness demonstrated by human-operated vehicles
and machines is as yet largely unattainable by automated systems.

Advances towards the development of autonomous aircraft capable of performing human-inspired acro-
batic maneuvers have been reported, e.g., in [4,5]. The work of Velenis er al. is a first step in the context
of Ackermann-steered (i.e., car-like) ground vehicles, with a special emphasis on techniques applicable to
driving on loose terrain.

Both [4] and [6] follow a similar basic process: (i) data are collected from an instrumented vehicle, while
an expert human pilot executes a maneuver of interest; (ii) these data are used to validate an analytical model
of the vehicle’s dynamics, applicable to the operating conditions encountered during the maneuver; (iii} the
data are further interpreted to parameterize and design a control strategy amenable to implementation on a
model-based comntrol strategy; (iv) such control strategy is finally assessed on a high-fidelity simulation.

A significant difference (aside from the application domain} is that Velenis e al. investigate the optimal-
ity of the maneuver, and develop a parameterization of control strategies to reduce the search space of a
nonlinear programming algorithm. This enables them to extend the applicability of the maneuver beyond
the original scenario: for example, they are able to compute trail-braking maneuvers through a variery of
corners, with different total turning angles.

2 Towards a symbolic approach to autonomous high-speed driving

As argued in [6], the development of methods for the design of control laws to perform a certain class of
maneuver is motivated by the prospect of building a library of such maneuvers, and then stringing together
such maneuvers in such a way to construct more complicated trajectories. This is the basis concept behind a
promising new research direction in the literature on robotics and automatic control, which is often referred
to as symbolic control; see, e.g., [2] for a general introduction.

A formal approach to the intuitive concept described above was presented in [3]. The key property of a
dynamical system enabling such an approach is symmertry, i.e., invariance to a certain class of transforma-
tions on the state of the system. This is a very general property of man-made vehicles: for example, the
dynamics of a car-like vehicle, operating on flat, horizontal terrain, are invariant with respect to rigid-body
motions on the horizontal plane. The existence of symmetries in a dynamical system allows the definition of
so-called “motion primitives,” i.e., equivalence classes of trajectories modulo the symmetry transformations.

In [3], in order to develop a systematic approach to the selection of motion primitives to include in a
library, two kinds of motion primitives were identified: trim trajectories and maneuvers. The former, also
called relative equilibria or steady-state trajectories, correspond to orbits of the infinitesimal action of the
symmetry transformation: for example, in the case of a car-like vehicle, such trim trajectories correspond
to circles described at constant speed, steering angle, and throttle settings (this includes degenerate circles,
such as straight lines). Maneuvers are then defined as transitions between such trim trajectories. The ap-
proach in [6] can in fact be seen as a way to compute optimal maneuvers: in particular, the trail-braking
maneuver described in the paper can be thought of as a transition between a trim trajectory in which the car
is moving straight at constant (high) speed, back to the same trim trajectory, with a different initial point,
and a different heading,.



The objective of the remainder of this note is complementary to [6]: instead of computing maneuvers, we
will analyze trim trajectories for the same dynamic model. The purpose of this investigation is not only to
provide well-defined “starting” and “ending” states for trail-braking (or other) maneuvers, but also to inves-
tigate possible ways to further decompose such maneuvers. For example, one could imagine decomposing a
trail-braking maneuver into (i) an entry phase, in which the car brakes hard and then steers to enter a circular
trajectory at a high sideslip angle; (ii) a steady-state phase, in which the car makes progress around the
corner, on a tight circle; and (iii) an exit phase, in which the car countersteers while accelerating out of the
turn. Varying the length of the “trim” phase, the car would be able to execute a whole class of trail-braking
turns, through a range of angles—without the need to compute explicitly several different trajectories.

3 Trim trajectories for the half-car model

Recall that since the dynamics of the car are invariant to rigid body motions in the plane, trim trajectories
are (arcs) of circles, followed at constant speed. It is convenient to rewrite the half-car dynamics equations
in [6] in a reference frame whose origin is moving on a circle of radius r at constant speed V, rotating at
angular velocity @ = V /r, and with (centripetal) acceleration @ = @?r. The x axis of this frame is aligned
with the velocity vector. Using the same notation as in [6], we get

m (k=209 —0’x) = frrcos(y+8)— frysin(y+8) + frycos ¥ — frysiny,
m (¥ +208— 0% + o’r) Sexsin{y + &) + frycos(y + 8) + frasin g + frycosy, )
Ly (frxsin & + fycos 8)fp — frylr.

For the motion of the vehicle to remain planar, the following balance equations, and constraint force in-
equalities, must be satisfied:

sz + fRz —mg,
= A(fpxc088 — fry8ind + frRy) + fEfF — fRoARS (2)
= My +h{frxsind + fryc088 + fry),

W
szzD: fRzzoa |MJC‘Smg§ (3)

{Note that the first two constraints (3) are usually satisfied for full-size vehicles. The third one—in which w
is the width of the wheelbase, and M, is the reaction moment along the vehicle’s longitudinal axis—could
be violated for large lateral accelerations occurring in vehicles with w/24 > 1 (e.g., trucks or SUV’s) and
indicates the onset of roll-over phenomena.)

The friction forces fry, fry, fRr. and fry can be found multiplying the constraint forces fp, and fr, by an
appropriate friction coefficient, which in turns depends on the amount of slippage between the tire and the
terrain. A popular model is Pacejka’s “Magic Formula” [1], which can be written in its basic form as

u(s) = Dsin{Carctan({Bs)), 4

where B, C, and D are appropriate constants, and s measures the slip ratio.

For the purpose of this note, as in [¢], the slip ratio is defined as the ratio between the relative speed of the
wheel and of the terrain at the contact point, and the speed of the contact point on the wheel in the absence
of driving/braking torques. With this definition in mind, we obtain

5= 4/s2+ (taner)?,

where o is the wheel slip angle, formed by the longitudinal axis of the wheel with the velocity vector at the
contact point, and s, is the longitudinal slip, defined as

Wwheal Fwheel
Sy =—— —
Veosa



Lateral and longitudinal friction coefficients are recovered as

Sx
HX(SJE:S) - ;H(S),
tan o
,Lly(OC,S) - .LL(S),

S

and finally we obtain the lateral and longitudinal friction force components as fy = U f7, fy = th fz
For simplicity, we will consider the front and rear longitudinal slip ratios spy and sg, as independent
control inputs {in place of, e.g., torques on the wheel).

3.1 Computing steady-state trajectories

Steady-state trajectories correspond to equilibrium points in the rotating frame, and can be found solving
the system of equations obtained from (1), (2}, and (3}, setting x, v, ¥, and their derivatives to zero.
Some algebra leads to

2 F
= MO oSy ———— 5
fRy WEF i ER ( )
gfp + ho rsin y
—_— — s 6
and 5
glr — hov rsiny
=
Jre {(lp 4R}
Combining (5) and (6), we get that the rear-wheel lateral friction coefficient ury is
Ry % rlpcos W
= = 7
MRy = 7 glr + hotrsiny 0
Since by definition
tan o
Hiy = ——H(s0), ®

equations (7) and (8) can be solved for sg as a function of the vehicle’s linear and angular velocity V and o,
and of the sideslip angle y. In particular, if we consider the case of a front-wheel drive (FWD) vehicle, and
assume that it is not braking, then sg; = 0 and hence sg = tan g, In this case, (7) and (8) simplify to

o?répcos y
- TP F oyt ) 9
gl + ho?rsin yr (tan i) 2

The total front-wheel slip ratio can be computed by solving

JRER, et + ff —dmor frycosy
e Jrz

for sp. The steering angle & necessary to achieve the above slip ratio can be found as a solution of the
following equation:

f{st) (10)

tan{d — &) mo reos(y -+ 8) + frycos §
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where & is the steering angle for which the wheel slip angle is zero. Finally, the front-wheel longitudinal

slip ratio can be recovered as
SEx = 1/ 5% — (tan o )2

3

(1



The procedure outlined above can be used to compute the sideslip angle y, steering angle §, and longi-
tudinal slip on the driving wheel sg, given a desired trim condition (V, ®). This calculation requires solving
three nonlinear equations, namely, (9), (10), and (11). These three scalar equations can be solved in se-
quence, using efficient numerical procedures. However, for a given pair (V, @), there may be no solution, or
more than one solutions.

In Figure 1, the region in the (V,a) plane for which at least one solution exists, with |y| < 90°, and
|&§] < 30° and |sp| < 1 (of these constraints, only the one on d was binding in some cases). This figure
reveals an inferesting structure in the set of achievable trim conditions for a FWD vehicle.

The bulk of trim conditions can be found in the region (approximately) bounded on the left by the parabola

a = r(30° W2, where
_ fp 4R
n(d) = \/L% t ( tand )

is the kinematic turn radius, computed assuming that no wheel slipping occurs. In the case athand, r(30°) =
4.94 m. This region indicates conditions where wheel slipping is moderate, and does not play a major role
in determining the behavior of the car—except possibly for the understeer noticeable at high speeds.
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Figure 1: Region of attainable trim conditions for the Front-Wheel Drive vehicle considered in the text.
The contour plot shows the sideslip angle y (in degrees) required to maintain a trim condition indicated by
linear velocity, and centripetal acceleration (such angle is not necessarily unique at all points in the region).
The circular markers indicate the kinematic limit on the turning radius.

On the other hand, to the left of the parabola mentioned above, there exist trim conditions in which the
vehicle’s center of mass travels on a circle with radius smaller than the minimum kinematic turning radius.
The sideslip angle is very large, of the order of 25 degrees in our case, and so is the steering angle. This
set of trim trajectories corresponds to what are colloquially referred to as “doughnuts,” and the ability of the
vehicle to achieve these trajectories can only be modeled taking into account the effects of wheel slipping
on the friction forces.



4 Conclusions

In this note, we aimed at complementing the paper under discussion by computing the set of attainable trim
trajectories for the half-car model. Tt is shown that this set is far from trivial, and contains some trajectories
corresponding to large sideslip angles, and significant slipping/skidding conditions. These trajectories ex-
ceed kinematic limits on the minimum radius of curvature, and on the maximum angular velocity (and hence
steering effectiveness) achievable by the car. It is believed that such trajectories can be used, in concert with
the techniques developed by Velenis, Tsiotras, and Lu, as further building blocks to construct systematically
new classes of “maneuvers,” enabling autonomous cars to design and execute on-line turns at the limit of
their performance.

While the real-world implementation of such algorithms on a full-size car is still difficult—especially
because of the difficulties in making available to an on-board computer all the sensory cues used by drivers,
ranging from visual and auditory data to tactile feedback from the steering wheel—the paper under discus-
sion and this note provide further steps towards a good understanding of the fundamental geometric and
dynamic properties of the dynamics of car-like vehicle on loose terrain.
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